Arithmetical modular forms and new constructions of p-adic L-functions on classical groups
Résumé
Une nouvelle approche pour construire des fonctions L p-adiques pour les groupes classiques est présentée comme un projet en cours avec Thanh Hung Dang and Anh Tuan Do (Hanoi, Vietnam). Pour un groupe algébrique G sur un corps de nombres K les fonctions L complexes sont certains produits d’Euler L(s,π,r,χ). En particulier, notre construction couvre les fonctions L étudiées par Shimura dans [52] via la méthode de doublement de Piatetski-Shapiro et Rallis. Un avatar p-adique L(s,π,r,χ) est une fonction p-adique analytique L p (s,π,r,χ) de s∈ℤ p , χmodp r interpolant les valeurs spéciales normalisées algébriques L * (s,π,r,χ) de la fonction L complexe analytique attachée. Nous utilisons les formes presque-holomorphes et quasi-modulaires générales pour calculer et pour interpoler les valeurs spéciales normalisées.