Unique continuation for many-body Schr\"odinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian - Archive ouverte HAL
Article Dans Une Revue Documenta Mathematica Année : 2020

Unique continuation for many-body Schr\"odinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian

Résumé

We prove the strong unique continuation property for many-body Pauli operators with external potentials, interaction potentials and magnetic fields in $L^p_{\rm loc}(\mathbb{R}^d)$, and with magnetic potentials in $L^q_{\rm loc}(\mathbb{R}^d)$, where $p > \max(2d/3,2)$ and $q > 2d$. For this purpose, we prove a singular Carleman estimate involving fractional Laplacian operators. Consequently, we obtain the Hohenberg-Kohn theorem for the Maxwell-Schr\"odinger model.

Dates et versions

hal-01989476 , version 1 (22-01-2019)

Identifiants

Citer

Louis Garrigue. Unique continuation for many-body Schr\"odinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian. Documenta Mathematica, 2020, 25, pp.869-898. ⟨10.4171/DM/765⟩. ⟨hal-01989476⟩
48 Consultations
0 Téléchargements

Altmetric

Partager

More