Optimal Uncertainty Quantification of a risk measurement from a thermal-hydraulic code using Canonical Moments - Archive ouverte HAL
Article Dans Une Revue International Journal of Uncertainty Quantification Année : 2020

Optimal Uncertainty Quantification of a risk measurement from a thermal-hydraulic code using Canonical Moments

Résumé

We study an industrial computer code related to nuclear safety. A major topic of interest is to assess the uncertainties tainting the results of a computer simulation. In this work we gain robustness on the quantification of a risk measurement by accounting for all sources of uncertainties tainting the inputs of a computer code. To that extent, we evaluate the maximum quantile over a class of distributions defined only by constraints on their moments. Two options are available when dealing with such complex optimization problems: one can either optimize under constraints; or preferably, one should reformulate the objective function. We identify a well suited parameterization to compute the optimal quantile based on the theory of canonical moments. It allows an effective, free of constraints, optimization.
Fichier principal
Vignette du fichier
IJ4UQ.pdf (569.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01987449 , version 1 (21-01-2019)
hal-01987449 , version 2 (20-08-2019)

Identifiants

Citer

Jerome Stenger, Fabrice Gamboa, Merlin M. Keller, Bertrand Iooss. Optimal Uncertainty Quantification of a risk measurement from a thermal-hydraulic code using Canonical Moments. International Journal of Uncertainty Quantification, 2020, 10, pp.35-53. ⟨hal-01987449v2⟩
337 Consultations
339 Téléchargements

Altmetric

Partager

More