Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions - Archive ouverte HAL Access content directly
Journal Articles Hardy-Ramanujan Journal Year : 2019

Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions

(1) , (1) , (1)
1

Abstract

Let $M$ be a squarefree positive integer and $P$ a prime number coprime to $M$ such that $P \sim M^{\eta}$ with $0 < \eta < 2/5$. We simplify the proof of subconvexity bounds for $L(\frac{1]{2}, f \otimes \chi)$ when $f$ is a primitive holomorphic cusp form of level $P$ and $\chi$ is a primitive Dirichlet character modulo $M$. These bounds are attained through an unamplified second moment method using a modified version of the delta method due to R. Munshi. The technique is similar to that used by Duke-Friedlander-Iwaniec save for the modification of the delta method.
Fichier principal
Vignette du fichier
41Article12.pdf (346.42 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01986708 , version 1 (19-01-2019)

Identifiers

Cite

Keshav Aggarwal, Yeongseong Jo, Kevin Nowland. Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions. Hardy-Ramanujan Journal, 2019, Atelier Digit_Hum, pp.104 - 117. ⟨10.46298/hrj.2019.5112⟩. ⟨hal-01986708⟩

Collections

INSMI
31 View
509 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More