Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2019

Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions

Résumé

Let $M$ be a squarefree positive integer and $P$ a prime number coprime to $M$ such that $P \sim M^{\eta}$ with $0 < \eta < 2/5$. We simplify the proof of subconvexity bounds for $L(\frac{1]{2}, f \otimes \chi)$ when $f$ is a primitive holomorphic cusp form of level $P$ and $\chi$ is a primitive Dirichlet character modulo $M$. These bounds are attained through an unamplified second moment method using a modified version of the delta method due to R. Munshi. The technique is similar to that used by Duke-Friedlander-Iwaniec save for the modification of the delta method.
Fichier principal
Vignette du fichier
41Article12.pdf (346.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01986708 , version 1 (19-01-2019)

Identifiants

Citer

Keshav Aggarwal, Yeongseong Jo, Kevin Nowland. Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-Functions. Hardy-Ramanujan Journal, 2019, Atelier Digit_Hum, pp.104 - 117. ⟨10.46298/hrj.2019.5112⟩. ⟨hal-01986708⟩
52 Consultations
913 Téléchargements

Altmetric

Partager

More