On certain sums over ordinates of zeta-zeros II - Archive ouverte HAL
Journal Articles Hardy-Ramanujan Journal Year : 2019

On certain sums over ordinates of zeta-zeros II

Abstract

Let γ denote the imaginary parts of complex zeros ρ = β + iγ of ζ(s). The problem of analytic continuation of the function $G(s) :=\sum_{\gamma >0} {\gamma}^{-s}$ to the left of the line $\Re{s} = −1 $ is investigated, and its Laurent expansion at the pole s = 1 is obtained. Estimates for the second moment on the critical line $\int_{1}^{T} {| G (\frac{1}{2} + it) |}^2 dt $ are revisited. This paper is a continuation of work begun by the second author in [Iv01].
Fichier principal
Vignette du fichier
41Article10.pdf (357.61 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01986703 , version 1 (19-01-2019)

Identifiers

Cite

Andriy Bondarenko, Aleksandar Ivić, Eero Saksman, Kristian Seip. On certain sums over ordinates of zeta-zeros II. Hardy-Ramanujan Journal, 2019, Atelier Digit_Hum, pp.85 - 97. ⟨10.46298/hrj.2019.5110⟩. ⟨hal-01986703⟩
34 View
690 Download

Altmetric

Share

More