Random forest framework customized to handle highly correlated variables: an extensive experimental study applied to feature selection in genetic data. - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Random forest framework customized to handle highly correlated variables: an extensive experimental study applied to feature selection in genetic data.

Fichier non déposé

Dates et versions

hal-01986653 , version 1 (18-01-2019)

Identifiants

Citer

Christine Sinoquet, Kamel Mekhnacha. Random forest framework customized to handle highly correlated variables: an extensive experimental study applied to feature selection in genetic data.. IEEE 5th International Conference on Data Science and Advanced Analytics, DSAA2018, Oct 2018, Turin, Italy. pp.217-226, ⟨10.1109/dsaa.2018.00032⟩. ⟨hal-01986653⟩
69 Consultations
0 Téléchargements

Altmetric

Partager

More