ON COMPACT ANISOTROPIC WEINGARTEN HYPERSURFACES IN EUCLIDEAN SPACE - Archive ouverte HAL
Article Dans Une Revue Archiv der Mathematik Année : 2019

ON COMPACT ANISOTROPIC WEINGARTEN HYPERSURFACES IN EUCLIDEAN SPACE

Résumé

We show that, up to homotheties and translations, the Wulff shape W F is the only compact embedded hypersurface of the Euclidean space satisfying H F r = aH F + b with a 0, b > 0, where H F and H F r are respectively the anisotropic mean curvature and anisotropic r-th mean curvature associated with the function F : S n −→ R * +. Further, we show that if the L 2-norm of H F r − aH F − b is sufficiently close to 0 then the hypersurface is close to the Wulff shape for the W 2,2-norm.
Fichier principal
Vignette du fichier
anisotropic-Weingarten.pdf (311.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01985969 , version 1 (18-01-2019)

Identifiants

Citer

Julien Roth, Abhitosh Upadhyay. ON COMPACT ANISOTROPIC WEINGARTEN HYPERSURFACES IN EUCLIDEAN SPACE. Archiv der Mathematik, 2019, 113 (2), pp.213-224. ⟨10.1007/s00013-019-01315-8⟩. ⟨hal-01985969⟩
51 Consultations
253 Téléchargements

Altmetric

Partager

More