On the least common multiple of several random integers - Archive ouverte HAL
Article Dans Une Revue Journal of Number Theory Année : 2019

On the least common multiple of several random integers

Alin Bostan
  • Fonction : Auteur
  • PersonId : 831654
Kilian Raschel

Résumé

Let $L_{n}(k)$ denote the least common multiple of $k$ independent random integers uniformly chosen in $\{1,2,\ldots ,n\}$. In this article, using a purely probabilistic approach, we derive a criterion for the convergence in distribution as $n\to \infty $ of $\frac{f(L_{n}(k))}{n ^{rk}}$ for a wide class of multiplicative arithmetic functions~$f$ with polynomial growth $r\in\mathbb{R}$. Furthermore, we identify the limit as an infinite product of independent random variables indexed by the set of prime numbers. Along the way, we compute the generating function of a trimmed sum of independent geometric laws, occurring in the above infinite product. This generating function is rational; we relate it to the generating function of a certain max-type Diophantine equation, of which we solve a generalized version. Our results extend theorems by Erd\H{o}s and Wintner (1939), Fern\'{a}ndez and Fern\'{a}ndez (2013) and Hilberdink and T\'{o}th (2016).
Fichier principal
Vignette du fichier
1901.03002.pdf (260.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01984389 , version 1 (17-01-2019)

Identifiants

Citer

Alin Bostan, Alexander Marynych, Kilian Raschel. On the least common multiple of several random integers. Journal of Number Theory, 2019, 204, pp.113--133. ⟨10.1016/j.jnt.2019.03.017⟩. ⟨hal-01984389⟩
288 Consultations
173 Téléchargements

Altmetric

Partager

More