Penalisation techniques for one-dimensional reflected rough differential equations - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2020

Penalisation techniques for one-dimensional reflected rough differential equations

Résumé

In this paper we solve real-valued rough differential equations (RDEs) reflected on an irregular boundary. The solution $Y$ is constructed as the limit of a sequence $(Y^n)_{n\in\mathbb{N}}$ of solutions to RDEs with unbounded drifts $(\psi_n)_{n\in\mathbb{N}}$. The penalisation $\psi_n$ increases with $n$. Along the way, we thus also provide an existence theorem and a Doss-Sussmann representation for RDEs with a drift growing at most linearly. In addition, a speed of convergence of the sequence of penalised paths to the reflected solution is obtained. We finally use the penalisation method to prove that the law at time $t>0$ of some reflected Gaussian RDE is absolutely contiuous with respect to the Lebesgue measure.
Fichier principal
Vignette du fichier
BEJ1212.pdf (393.61 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01982781 , version 1 (15-01-2019)
hal-01982781 , version 2 (26-04-2019)
hal-01982781 , version 3 (15-11-2019)
hal-01982781 , version 4 (12-03-2020)
hal-01982781 , version 5 (01-09-2020)

Identifiants

Citer

Alexandre Richard, Etienne Tanré, Soledad Torres. Penalisation techniques for one-dimensional reflected rough differential equations. Bernoulli, 2020, 26 (4), pp.2949--2986. ⟨10.3150/20-BEJ1212⟩. ⟨hal-01982781v5⟩
454 Consultations
413 Téléchargements

Altmetric

Partager

More