Interpolation, extrapolation, Morrey spaces and local energy control for the Navier--Stokes equations. - Archive ouverte HAL
Article Dans Une Revue Banach Center Publications Année : 2019

Interpolation, extrapolation, Morrey spaces and local energy control for the Navier--Stokes equations.

Résumé

Barker recently proved new weak-strong uniqueness results for the Navier-Stokes equations based on a criterion involving Besov spaces and a proof through interpolation between Besov-Hölder spaces and L 2. We improve slightly his results by considering Besov-Morrey spaces and interpolation between Besov-Morrey spaces and L 2 uloc. Let u 0 a divergence-free vector field on R 3. We shall consider weak solutions to the Cauchy initial value problem for the Navier-Stokes equations which satisfy energy estimates. The differential Navier-Stokes equations read as ∂ t u + u. ∇ u = ∆ u − ∇p div u = 0 u(0, .) = u 0 *
Fichier principal
Vignette du fichier
besov_morrey.pdf (186.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01981330 , version 1 (15-01-2019)

Identifiants

Citer

Pierre Gilles Lemarié-Rieusset. Interpolation, extrapolation, Morrey spaces and local energy control for the Navier--Stokes equations.. Banach Center Publications, 2019, 119, pp.279-294. ⟨10.4064/bc119-16⟩. ⟨hal-01981330⟩
75 Consultations
107 Téléchargements

Altmetric

Partager

More