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Interpolation, extrapolation, Morrey spaces

and local energy control for the Navier–Stokes

equations

Pierre Gilles Lemarié–Rieusset∗

Abstract

Barker recently proved new weak-strong uniqueness results for the

Navier–Stokes equations based on a criterion involving Besov spaces

and a proof through interpolation between Besov-Hölder spaces and

L
2. We improve slightly his results by considering Besov-Morrey

spaces and interpolation between Besov-Morrey spaces and L
2
uloc.

Keywords : Navier–Stokes equations, Morrey spaces, Besov spaces, uni-
formly locally square integrable functions, weak-strong uniqueness

AMS classification : 35K55, 35Q30, 76D05.

1 The Navier–Stokes equations

Let ~u0 a divergence-free vector field on R
3. We shall consider weak solutions

to the Cauchy initial value problem for the Navier–Stokes equations which
satisfy energy estimates.

The differential Navier–Stokes equations read as

∂t~u+ ~u.~∇~u = ∆~u− ~∇p

div ~u = 0

~u(0, .) = ~u0
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Under reasonable assumptions, the problem is equivalent to the following
integro-differential problem :

~u = et∆~u0 − B(~u, ~u)(t, x)

where

B(~u,~v) =

∫ t

0

e(t−s)∆
P div (~u⊗ ~v) ds (1)

and P is the Leray projection operator. (See [LR 2, LR 6] for details).

Weak Leray solutions for the Navier–Stokes equations

When ~u0 ∈ L2, Leray proved existence of solutions ~u on (0,+∞)× R
3 such

that :

• ~u ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x

• limt→0+ ‖~u(t, .)− ~u0‖2 = 0

• we have the Leray energy inequality

‖~u(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~u‖22 ds ≤ ‖~u0‖22 (2)

Such solutions are weak solutions : the derivatives in the Navier–Stokes so-
lutions are taken in the sense of distributions. Those solutions (that satisfy
the energy inequality (2)) are called Leray weak solutions.

When ~u0 ∈ L2, Leray’s proof of existence of solutions [Le] is based on
mollification, energy estimates and compactness arguments :

• he solves
∂t~uǫ + (ϕǫ ∗ ~uǫ).~∇~uǫ = ∆~uǫ − ~∇pǫ

with div ~uǫ = 0 and ~uǫ(0, .) = ~u0. Here, ϕ ∈ D,
∫

ϕdx = 1 and
ϕǫ(x) =

1
ǫ3
ϕ(x

ǫ
).

• the solution holds on an interval (0, Tǫ) where Tǫ depends on ǫ and on
‖~u0‖2 and we have the equality

‖~uǫ(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~uǫ‖22 ds = ‖~u0‖22

• the solution is then global; moreover by Rellich theorem, we find a
subsequence that converges strongly in (L2

tL
2
x)loc to a Leray solution ~u
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Such solutions (i. e. obtained by this mollification/extraction process) will
be called in the following restricted Leray weak solutions.

Restricted Leray solutions satisfy the Leray energy inequality which takes
into account the energy on the whole space. But they enjoy as well a point-
wise inequality property : for a non-negative locally finite measure µ we
have

∂t(|~u|2) + 2|~∇⊗ ~u|2 = ∆(|~u|2)− div ((2p+ |~u|2)~u)− µ (3)

Leray solutions that enjoy the pointwise energy inequality are called suitable
Leray solutions [CKN].

Local weak Leray solutions

The pointwise energy inequality allows one [LR 1, LR 2] to develop a theory
of weak solutions with infinite energy. Consider ~u0 a divergence-free vector
field that is uniformly locally square integrable :

sup
x0∈R3

∫

|x−x0|<1

|~u0(x)|2 dx < +∞.

A local Leray solution on (0, T )× R
3 is a solution such that

• ~u ∈ L∞
t (L2

uloc) ∩ (L2
t Ḣ

1
x)uloc

• for all compact subset K of R3, limt→0+
∫

K
|~u(t, .)− ~u0|2 dx = 0

• we have the pointwise energy inequality (3).

Local in time existence of restricted local Leray solutions has been proved
for a positive T that depends only on ‖~u0‖L2

uloc
(see section 8).

2 The Prodi–Serrin criterion for weak-strong

uniqueness

Based on a compactness criterion, the proof of existence of Leray solutions
does not provide any clue on the would-be uniqueness of the solution to the
Cauchy initial value problem.

A classical case of uniqueness of Leray weak solutions is Serrin’s criterion
for weak-strong uniqueness [Pr, Se]. If ~u0 ∈ L2 and if the Navier-Stokes
equations has a solution ~u on (0, T ) such that

~u ∈ XT = Lp
tL

q
x with

2

p
+

3

q
= 1 and 2 ≤ p < +∞
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then if ~v is a Leray solution we have ~u = ~v on (0, T ).
The proof of the criterion is based on the fact that if ~v is a Leray solution

and if ~u is the mild solution with ‖~u‖XT
< +∞, then the difference ~w = ~u−~v

satisfies a Gronwall estimate :

‖~w(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~w‖22 ds ≤ 2

∫ T

0

|
∫

~u.(~w.~∇~w) dx| ds.

We have (for 2
p
+ 3

q
= 1)

‖~u⊗ ~w‖2 ≤ C‖~u‖q‖~w‖
2
p

2 ‖~∇⊗ ~w‖
3
q

2

so that

|
∫

~u.(~w.~∇~w) dx| ≤ ‖~u‖q‖~w‖
2
p

2 ‖~∇⊗ ~w‖1+
3
q

2 = ‖~u‖q(‖~w‖2)
1
p (‖~∇⊗ w‖2)1− 1

p .

Thus, we find

2

∫ T

0

|
∫

~u.(~w.~∇~w) dx| ds ≤ C

∫ t

0

‖~u‖pq‖~w‖22 ds+
∫ t

0

‖~∇⊗ ~w‖22 ds.

The facts that ‖~w(0, .)‖22 = 0 and ‖~w(t, .)‖22 ≤ C
∫ t

0
‖~u‖pq ‖~w‖22 ds then gives

~w = 0 on (0, T ).
We may comment a little further in the case 2 < p < +∞. In that case,

the bilinear operator B (given by (1)) is bounded on XT = Lp
tL

q
x. Thus,

we find that the existence of T > 0 and of a solution in LpLq with 2
p
+ 3

q
is

equivalent to the existence of T ′ such that et∆~u0 ∈ LpLq on (0, T ′) (and on
(0,+∞), since ~u0 ∈ L2). Using the thermic characterization of Besov spaces,
we can see that this is equivalent with

~u0 ∈ Ḃ
−1+ 3

q
q,p .

Thus, the initial value is not only in L2, but it must belong as well to a Besov
space with a better regularity than provided by the embedding

L2 ⊂ Ḃ
− 3

2
+ 3

q

q,2 ⊂ Ḃ
− 3

2
+ 3

q
q,p .

3 The Koch and Tataru theorem and T. Barker’s

question

We may now wonder how to generalize the Prodi–Serrin criterion. It means
: given ~u0 ∈ L2 and weak Leray solutions associated to ~u0, find a space X
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(as large as possible) such that if moreover ~u0 ∈ X then we have a solution
~u ∈ XT for some space XT of functions on (0, T ) × R

3 and such that the
existence of a solution in XT implies that any other weak Leray solution is
equal to this solution ~u for 0 < t < T .

The space BMO−1

First of all, we precise which kind of space X we are going to study. The idea is
to look at an initial value which generates a solution in some uniqueness class
(where uniqueness holds for small solutions). The setting where to construct
such solutions is the setting of mild solutions, as introduced by Kato [Ka] :
mild solutions are constructed by the Banach contraction principle.

Due to the symmetries of the equations (if ~u is a solution for initial value
~u0, then λ~u(λ2t, λ(x− x0)) is a solution for the initial value λ~u0(λ(x− x0))),
we look for spaces with norms invariant through the transforms ~u0(.) 7→
λ~u(λ(.− x0)) (for λ > 0). Moreover, in order to be able to define

B(~u,~v) =

∫ t

0

e(t−s)∆
P div (~u⊗ ~v) ds

at least for ~u = ~v = et∆~u0 (first step of the Picard iteration to find a fixed-
point to ~u = et∆~u0−B(~u, ~u)), we ask that

∫

[0,1]×B(0,1)
|es∆~u0(y)|2 ds dy < +∞.

Thus, we are lead to introduce the space X of distributions v such that

• supt>0

√
t‖et∆v‖∞ < +∞

• sup0<t,x0∈R3 t−3/2
∫ t

0

∫

B(x0,
√
t)
|es∆v(y)|2 dy ds)1/2

This space X has been identified by Koch and Tataru [KocT] : this
is the Triebel–Lizorkin space Ḟ−1

∞,2, or equivalently the space BMO−1 =√
−∆BMO. Moreover, they proved the following theorem :

Theorem 1 For 0 < T ≤ ∞, define

‖~u‖XT
=

sup
0<t<T

√
t‖~u(t, .‖∞ + sup

0<t<T,x0∈R3

(t−3/2

∫ t

0

∫

B(x0,
√
t)

|~u(s, y)|2 dy ds)1/2

There exists C0 (which does not depend on T ) such that if T ∈ (0,+∞],
if ~u and ~v are defined on (0, T )× R

3 and if

B(~u,~v) =

∫ t

0

e(t−s)∆
P div (~u⊗ ~v) ds

5



then
‖B(~u,~v)‖XT

≤ C0‖~u‖XT
‖~v‖XT

.

Corollary 1 If ‖et∆~u0‖XT
< 1

4C0
, then the integral Navier–Stokes equations

have a solution on (0, T ) such that ‖~u‖XT
≤ 2‖et∆~u0‖XT

.
This is the unique solution such that ‖~u‖XT

≤ 1
2C0

.

A special case of initial data that leads to a solution in some XT is given
by the subspace VMO−1 of BMO−1.

Definition 1 VMO−1 is the closure of compactly supported functions in
BMO−1.

If ~u0 ∈ VMO−1, then limT→0 ‖et∆~u0‖XT
= 0. Remark that we have the

embedding Ḃ
−1+ 3

q
q,p ⊂ VMO−1 for 2 < p < +∞ and 2

p
+ 3

q
= 1. As a matter of

fact, we may consider VMO−1 as a limit case for the scale of spaces Ḃ
−1+ 3

q
q,p .

Thus, Barker [Ba] raised the following question :

Question 1 If ~u0 belongs to L2 ∩ VMO−1, does there exists a positive time
T such that every weak Leray solution of the Cauchy problem for the Navier–
Stokes equations with ~u0 as initial value coincide with the mild solution in
XT ?

If ~u0 ∈ L2∩VMO−1 and if ‖et∆~u0‖XT
≤ 1

4C0
, then if ~u is a restricted Leray

solution of the Navier–Stokes solutions with initial value ~u0, then ‖~v‖XT
≤

2‖et∆~u0‖XT
. In particular, we have uniqueness of restricted Leray solutions

on (0, T ).
As a matter of fact, this proof of local uniqueness of restricted weak Leray

solutions holds for a slightly more general class :

Definition 2 BMO−1
0 is the space of distributions u0 in BMO−1 such that

lim
T→0

‖et∆u0‖XT
= 0.

In the following, we will focus on the hypothesis ~u0 ∈ L2 ∩ BMO−1
0 and

on the issue of uniqueness for Leray solutions.
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4 The limiting case

Up to now, we don’t know how to prove local uniqueness of the Leray solu-
tions when the initial value ~u0 belongs to L2 ∩ BMO−1

0 . What we know for
sure is that the mild solution ~u in XT belongs to L∞((ǫ, T ) × R

3) for every
positive ǫ ∈ (0, T ). Moreover, ~u is a weak Leray solution and for every other
Leray solution ~v and for ǫ > 0, we have

∂t(~u.~v) = ~u.∂t~v + ∂t~u.~v

which gives for 0 < ǫ < t < T

∫

~u(t, x).~v(t, x) dx =

∫

~u(ǫ, x).~v(ǫ, x) dx− 2

∫ t

ǫ

∫

~∇⊗ ~u.~∇⊗ ~v dx ds

−
∫ t

ǫ

∫

~u.(~v.~∇~v) + ~v.(~u.~∇~u) dx ds

From
∫

~u.(~v.~∇~v)+~v.(~u.~∇~u) dx=

∫

~u.(~v.~∇(~v−~u))+(~v−~u).(~u.~∇~u) dx=

∫

~u
(

(~v−~u).~∇(~v−~u)
)

dx

and letting ǫ go to 0, we get

∫

~u(t, x).~v(t, x) dx = ‖~u0‖22 − 2

∫ t

0

∫

~∇⊗ ~u.~∇⊗ ~v dx ds

− lim
ǫ→0

∫ t

ǫ

∫

~u
(

(~v − ~u).~∇(~v − ~u)
)

dx ds

and (letting ~v = ~u)

‖~u(t, .)‖22 = ‖~u0‖22 − 2

∫ t

0

‖~∇⊗ ~u‖22 ds.

Combining those two equalities with the Leray energy inequality for ~v

‖~v(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~v‖22 ds ≤ ‖~u0‖22

we get the following inequality for ~w = ~u− ~v :

‖~w(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~w‖22 ds ≤ 2

∫ T

0

|
∫

~u.(~w.~∇~w) dx| ds. (4)
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As a matter of fact, the key ingredient in Prodi–Serrin’s criterion is the
estimation of the integral

I(~u, ~w) =

∫ t

0

∣

∣

∣

∣

∫

~u(. ~w.~∇~w) dx

∣

∣

∣

∣

ds

but, if ~w = ~v − ~u with ~v a Leray solution and ~u the mild solution in XT , we
don’t even know whether I(~u, ~w) is finite.

In the limiting case of Prodi and Serrin, (for p = 2 and q = +∞), we
write

‖~w(t, .)‖22+2

∫ t

0

‖~∇⊗~w‖22 ds ≤ 2

∫ t

0

∫ t

0

∣

∣

∣

∣

∫

~u(. ~w.~∇~w) dx

∣

∣

∣

∣

ds ≤ 2

∫ t

0

‖~u⊗~w‖2‖~∇⊗~w‖2 ds

and get

‖~w(t, .)‖22 ≤
∫ t

0

‖~u‖2∞‖~w‖22 ds. (5)

Of course, we may conclude under the assumption that ~u ∈ L2
tL

∞
x . Ac-

tually, we shall not be interested in measurabilty issues for functions with
values in a non-separable space such as L∞ (i.e. in Bochner measurability for
instance), as we are dealing with locally integrable functions for the Lebesgue
measure dt dx on (0, T )×R

3. Thus, for almost every t the quantity ‖~u(t, .)‖∞
will be wel-defined as a measurable function of t, and ~u ∈ L2

tL
∞
x will simply

mean that
∫ T

0
‖~u(t, .)‖2L∞(dx) dt < +∞. (See [LR 2] for details.)

If ~u ∈ L2
tL

∞
x on (0, T ) × R

3, the Prodi–Serrin criterion proves that ev-
ery weak Leray solution ~v on (0, T ) is equal to the mild solution ~u. (This
has even be extended to the case ~u ∈ L2

tBMOx by Kozono and Tanyuchi
[KozT]). But it is not easy to translate the condition that ~u ∈ L2

tL
∞
x into

an equivalent assumption on ~u0. The problem comes from the fact that the
bilinear operator B is not bounded on L2

tL
∞
x .

On the other hand, if we only assume ~u0 ∈ L2 ∩ BMO−1
0 , we only know

the inequality ‖~u(t, .)‖∞ ≤ ‖~u‖XT

o(1)√
t
. We find an integrability issue near

t = 0. To check that this is actually an issue, consider the following example
: take ~ω a divergence-free vector field in the Schwartz class such that the
Fourier transform of ~ω is compactly supported in the annulus 1 < |ξ| < 2;
define

~u0(x) =

+∞
∑

j=0

2j
1√
1 + j

~ω(2jx);

we have ~u0 ∈ L2; ~u0 ∈ Ḃ
−1+ 3

q
q,p ⊂ Ḃ−1

∞,p (with 2 < p < +∞ and 2
p
+ 3

q
= 1)

but ~u0 /∈ Ḃ−1
∞,2; as the bilinear operator B is bounded on Lp

tL
q
x ∩ L2

tL
∞
x , if

we assume that the mild solution ~u ∈ Lp
tL

q
x belongs to L2

tL
∞
x , we would find

that et∆~u0 ∈ L2
tL

∞
x , and thus ~u0 ∈ Ḃ−1

∞,2; thus, we have
∫ T

0
‖~u‖2∞ dt = +∞.
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5 Barker’s theorem

In this section, we shall sketch the proof of Barker [Ba], as we shall extend it
in Section 7 to the case of Besov–Morrey spaces.The main idea in the recent
paper of Barker is the following one : if we want to use only the inequality

‖~u(t, .)‖∞ ≤ ‖~u‖XT

o(1)√
t

to deal with the Gronwall inequality (5), we need to assume more than ~w ∈
L∞
t L2

x. Indeed, we have the easy following lemma :

Lemma 1 Let δ > 0. Let A and B be locally bounded non-negative measur-
able functions on (0, T ] such that

lim
t→0

tA(t) = 0 and sup
0<t<T

t−δB(t) = 0.

If we have moreover, for all t ∈ (0, T ],

B(t) ≤
∫ t

0

A(s)B(s) ds

then B = 0.

Proof : We have

B(t) ≤ tδ

δ
sup
0<s<t

sA(s) sup
0<σ<t

σ−δB(σ)

so that B = 0 on (0, T0] as long as sup0<s<T0
sA(s) < δ. For t > T0, we then

write B(t) ≤ supT0<s<T A(s)
∫ t

T0
B(s) ds and we find B = 0. ⋄

As ~w = ~v− ~u = (~v− et∆~u0)− (~u− et∆~u0), the extra information on ‖~w‖2
will be provided by the following lemma :

Lemma 2 Let ~u0 be a divergence-free vector field with ~u0 ∈ L2and let ~v be a
weak Leray solution of the Navier–Stokes equations with initial value ~u0. If
moreover

~u0 ∈ [L2, B−γ
∞,∞]θ,∞ for some − 1 < −γ < 0 and 0 < θ < 1

then there exists δ > 0 such that

sup
t>0

t−δ‖~v(t, .)− et∆~u0‖2 < +∞.
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Proof : Assume ~u0 ∈ [L2, B−γ
∞,∞]θ,∞. For 0 < ǫ < 1, split ~u0 in ~αǫ + ~βǫ with

‖~αǫ‖2 ≤ C0ǫ
θ and ‖~βǫ‖Ḃ−γ

∞,∞
≤ C0ǫ

θ−1

where C0 does not depend on ǫ (but depends on ~u0).

We have a solution ~Uǫ for the Navier-Stokes equations with initial value ~βǫ

such that ‖~Uǫ(t, .)‖∞ ≤ C1t
− γ

2 ǫθ−1 on an interval (0, Tǫ) with T
1−γ
2

ǫ ǫθ−1 = C2.

Moreover ~βǫ = ~u0 − ~αǫ ∈ L2 and we find that sup0<t<Tǫ
‖~Uǫ‖2 ≤ C3 and that

‖~Uǫ − et∆~βǫ‖2 ≤ C4t
(1−γ)/2ǫθ−1.

Since ~Uǫ is in L2
tL

∞
x on every bounded interval, we get

∫

~Uǫ(t, x).~v(t, x) dx =

∫

~βǫ(x).~u0(x) dx− 2

∫ t

0

∫

~∇⊗ ~Uǫ.~∇⊗ ~v dx ds

−
∫ t

0

∫

~Uǫ

(

(~v − ~Uǫ).~∇(~v − ~Uǫ)
)

dx ds

and

‖~Uǫ(t, .)‖22 = ‖~βǫ‖22 − 2

∫ t

0

‖~∇⊗ ~Uǫ‖22 ds.

Combining those two equalities with the Leray energy inequality for ~v

‖~v(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~v‖22 ds ≤ ‖~u0‖22

we get the following inequality for ~Wǫ = ~v − ~Uǫ:

‖ ~Wǫ(t, .)‖22 + 2

∫ t

0

‖~∇⊗ ~Wǫ‖22 ds ≤ ‖~αǫ‖22 + 2

∫ T

0

|
∫

~Uǫ.( ~Wǫ.~∇ ~Wǫ) dx| ds.

Thus, we get

‖ ~Wǫ(t, .)‖22 ≤ C2
0ǫ

2θ + C2
1ǫ

2(θ−1)

∫ t

0

s−γ‖ ~Wǫ(s, .)‖22 ds

so that

‖ ~Wǫ(t, .)‖22 ≤ C2
0ǫ

2θeC
2
1 ǫ

2(θ−1) t1−γ

1−γ .

Now, for τ < 1, take ǫ = τµ with 1−γ
2

+ µ(θ − 1) > 0. We find that, for
0 < t < Tǫ with

Tǫ = C
2

1−γ

2 ǫ
2(1−θ)
1−γ = C

2
1−γ

2 τµ
2(1−θ)
1−γ [ where µ

2(1− θ)

1− γ
< 1],
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we have the inequality

‖~v − et∆~u0‖2 ≤‖αǫ‖2 + ‖ ~Wǫ‖2 + ‖~Uǫ − et∆~βǫ‖2

≤C0ǫ
θ(1 + e

C2
1

2(1−γ)
t1−γ

T
1−γ
ǫ ) + C4t

1−γ
2 ǫθ−1

If τ is small enough, we have τ < Tǫ and we find

‖~v(τ, .)− eτ∆~u0‖2 ≤ C0τ
µθ(1 + e

C2
1

2(1−γ ) + C4τ
1−γ
2

+µ(θ−1)

The lemma is proved. ⋄ Barker’s theorem then reads as :

Theorem 2 Let ~u0 be a divergence-free vector field with ~u0 ∈ L2and let ~v be
a weak Leray solution of the Navier–Stokes equations with initial value ~u0. If
moreover

~u0 ∈ BMO−1
0 ∩ Ḃ−s

q,∞ with 3 < q < +∞ and − s > −1 +
2

q

then there exists T > 0 such that if ~v is a Leray solution and if ~u is the mild
solution with ‖~u‖XT

< +∞, then ~u = ~v on (0, T ).

Remark We have the embeddings L2 ⊂ Ḃ
− 3

2
+ 3

q

q,2 ⊂ Ḃ
− 3

2
+ 3

q
q,∞ , so that the

information conveyed by the hypothesis ~u0 ∈ Ḃ−s
q,∞ is interesting only for the

high frequencies of ~u0. Moreover the embeddings L2 = Ḃ0
2,2 and BMO−1 ⊂

Ḃ−1
∞,∞ gives that

L2 ∩ BMO−1
0 ⊂ Ḃ

−1+ 2
q

q,q ⊂ Ḃ
−1+ 2

q
q,∞ .

Thus, the information conveyed by the hypothesis ~u0 ∈ Ḃ−s
q,∞ is not contained

in the assumption ~u0 ∈ L2 ∩ BMO−1
0 . Finally, if −s > −1 + 3

q
= 2

p
, then we

have

L2 ∩ BMO−1
0 ∩ Ḃ−s

q,∞ ⊂ Ḃ
−1+ 2

q
q,q ∩ Ḃ−s

q,∞ ⊂ Ḃ
−1+ 3

q
q,p .

Thus, the theorem is interesting only in the range −1 + 2
q
< −s ≤ −1 + 3

q
,

which corresponds to the gap between L2∩BMO−1
0 . (where loca‘luniqueness

is conjectured to hold) and Ḃ
−1+ 3

q
q,p (for which the Prodi–Serrin criterion shows

that local uniqueness holds).

A further remark is that we have the embedding Ḃ
−1+ 3

q
q,∞ ⊂ BMO−1, so

that we have a Prodi-Serrin criterion with ~u ∈ Lp
tL

q
x (with

2
p
+ 3

q
= 1) replaced

with
sup

0<t<T
t
1
p‖~u‖q < +∞ and lim

t→0
t
1
p‖~u(t, .)‖q = 0.

Proof :

The first step is the use of interpolation inequalities in order to be able
to check that ~u0 fulfills the assuptions of Lemma 2.
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• Since ~u0 ∈ L2 = Ḃ0
2,2 and ~u0 ∈ BMO−1 ⊂ Ḃ−1

∞,∞, we have ~u0 ∈ Ḃ
−1+ 2

q
q,q .

• Since ~u0 ∈ Ḃ
−1+ 2

q
q,q ∩ Ḃ−s

q,∞, we have for −1 + 2
q
< −σ < −s, ~u0 ∈ Ḃ−σ

q,1 .

• The Besov space Ḃ−σ
q,1 is embedded in the Sobolev space Ẇ−σ,q.

• For q < r < ∞, we have Ẇ−σ,q = [L2, Ẇ−δ,r][θ] with
1
q
= 1−θ

2
+ θ

r
and

−s = −θδ (complex inteerpolation)

• Since Ẇ−δ,r ⊂ Ḃ
−1+ 3

r∞,∞ , we have [L2, Ẇ−δ,r][θ] ⊂ [L2, Ḃ
−δ− 3

r∞,∞ ]θ,∞ with

−δ = −s

θ
= −s

1
2
− 1

r
1
2
− 1

q

= − (−s)

−1 + 2
q

+O(
1

r
)

so that −δ − 3
r
> −1 for r large enough

We may now end the proof : recall that if ~v is a Leray solution and if ~u is
the mild solution with ‖~u‖XT

< +∞, then the difference ~w = ~u− ~v satisfies
a Gronwall estimate :

‖~w(t, .)‖22 ≤
∫ t

0

‖~u‖2∞‖~w‖22 ds.

By Lemma 2, we have ‖~v(t, .)− et∆~u0‖2 = O(tδ) and ‖~u(t, .)− et∆~u0‖2 =
O(tδ) for some positive δ. On the other hand, we know that ‖~u(t, .)‖∞ =
o( 1√

t
). Using Lemma 1, we find that ~w = 0, and ~v = ~u.⋄

6 The Prodi–Serrin criterion for Besov–Morrey

spaces

Morrey spaces provide a natural tool for extending the Prodi–Serrin criterion.

Definition 3 For 1 < r ≤ q < +∞, we define the Morrey space Ṁ r,q as the
space of Lebesgue measurable functions f on R

3 such that

sup
R>0,x0∈R3

R
3
q
− 3

r (

∫

B(x0,R)

|f(x)|r dx)1/r = ‖f‖Ṁr,q < +∞.

Similarly, the space Ṁ1,q is the space of locally finite Borelian (signed) mea-
sure µ such that

sup
R>0,x0∈R3

R
3
q
−3(

∫

B(x0,R)

d|µ|) = ‖µ‖Ṁ1,q < +∞.

12



Remark : For absolutely continuous measures dµ = f dx with f ∈ L1
loc, we

have

‖µ‖Ṁ1,q = sup
R>0,x0∈R3

R
3
q
−3(

∫

B(x0,R)

|f(x)| dx).

The key inequality in the proof of the Prodi–Serrin criterion was the
inequality (for all w ∈ H1)

‖uw‖2 ≤ C‖u‖q‖w‖
2
p

2 ‖~∇w‖
3
q

2

with 2
p
+ 3

q
= 1 and 3 < q < +∞. If we want to replace this inequality by a

more general inequality

‖uw‖2 ≤ N(u)‖w‖
2
p

2 ‖~∇w‖
3
q

2

(again with 2
p
+ 3

q
= 1 and 3 < q < +∞), then we proved in [LR 3] that

the existence of a finite N(u) is equivalent to the fact that u ∈ Ṁ2,q, and
moreover that N(u) ≈ ‖u‖Ṁ2,q .

This leads to the following easy extension of the Prodi-Serrin criterion :

Theorem 3 If ~u0 ∈ L2 and if the Navier-Stokes equations has a solution ~u
such that

~u ∈ Lp
t Ṁ

2,q
x with

2

p
+

3

q
= 1 and 3 < q < +∞

then if ~v is a Leray solution we have ~u = ~v on (0, T ).

If 3 < q < +∞, the existence of T > 0 and of a solution in LpṀ2,q with
2
p
+ 3

q
is equivalent to the existence of T ′ such that et∆~u0 ∈ LpṀ2;q on (0, T ′)

(and on (0,+∞), since ~u0 ∈ L2), thus with

~u0 ∈ Ḃ
−1+ 3

q

Ṁ2,q ,p
.

This Besov–Morrey space has been introduced in 1994. by Kozono and Ya-
mazaki [KoY]. It is easy to check that, for 2 < p < +∞ and 2

p
+ 3

q
= 1, we

have the inequality

‖et∆u0‖XT
≤ Cq(

∫ T

0

‖et∆u0‖pṀ2,q dt)
1:p

so that we have the embedding Ḃ
−1+ 3

q

Ṁ2,q ,p
⊂ BMO−1

0 for 2 < p < +∞ and
2
p
+ 3

q
= 1.

13



7 Barker’s theorem and Besov-Morrey spaces

We shall extend Barker’s theorem.

Theorem 4 If

• ~u0 ∈ L2 ∩ BMO−1
0

• 3 < q < +∞, −s > −1 + 2
q
and ~u0 ∈ Ḃ−s

Ṁ1,q,∞

then there exists T > 0 such that if ~v is a suitable Leray solution and if ~u is
the mild solution with ‖~u‖XT

< +∞, then ~u = ~v on (0, T ).

Proof : As we shall see, the proof is very similar to Barker’s proof for
Theorem 2 [Ba]. However, we shall meet some technical issues.

We sketch the proof :

• ~u0 ∈ L2 = Ḃ0
2,2 and ~u0 ∈ BMO−1 ⊂ Ḃ−1

∞,∞, thus ~u0 ∈ Ḃ
−1+ 2

q
q,q

• ~u0 ∈ Ḃ
−1+ 2

q
q,q ∩ Ḃ−s

Ṁ1,q,∞ thus ~u0 ∈ Ḃ−σ

Ṁp,q,∞ for 1 < p < q, 1
p
= 1 − θ + θ

q

and −σ = −s(1− θ) + θ(−1 + 2
q
) > −1 + 2

q
. We shall take p > 2.

• as p < q, we have Ḃ
−1+ 2

q
q,q ⊂ Ḃ

1+ 2
q

q,p . Thus, for −1 + 2
q
< −γ < −σ,

Ḃ
−1+ 2

q
q,q ∩ Ḃ−σ

Ṁp,q,∞ ⊂ Ḃ−γ

Ṁp,q,1
⊂ Ẇ−γ,Ṁp,q

.

We now encounter our first problem. We can no longer write W−γ,Ṁp,q
as

a subspace of an interpolate space between L2 and Ḃ−1+δ
∞,∞ . More precisely, let

us assume Ḃ−γ

Ṁp,q ,1
⊂ [L2, Ḃ−1+δ

∞,∞ ]θ,∞; by homogeneity of the norms, we must

have −γ − 3
q
= −(1− θ)3

2
− θ(1− δ). We have

[L2, Ḃ−1+δ
∞,∞ ]θ,∞ ⊂ Ḃ

−θ(1−δ)
Lr,∞,∞

with r = 2
1−θ

. In particular, for u ∈ [L2, Ḃ−1+δ
∞,∞ ]θ,∞, we have that e∆et∂

2
3u

goes to 0 in S ′ when t goes to +∞. But if 3p ≤ 2q, if u depends only on
(x1, x2) and not on x3, and if u ∈ Ḃ−γ

Ṁp,
2q
3 ,1

(R2), then u ∈ Ḃ−γ

Ṁp,q,1
(R3) and

e∆et∂
2
3u = e∆u. Thus, we have a contradiction.

We better use complex interpolation and write that

W−γ,Ṁp,q

= [Ṁ2, 2
p
q, Ẇ−ρ,Ṁ

r, rp q

][θ]

14



for r > p, 1−θ
2

+ θ
r
= 1

p
, γ = θρ. (For interpolation of Morrey spaces, see

[LR 4, LR 5])

Then, we remark that Ṁ2, 2
p
q ⊂ L2

uloc and write that

[Ṁ2, 2
p
q, Ẇ−ρ,Ṁ

r, rp q

][θ] ⊂ [Ṁ2, 2
p
q, Ẇ−ρ,Ṁ

r, rp q

]θ,∞ ⊂ [L2
uloc, Ḃ

−ρ− 3p
rq

∞,∞ ]θ,∞

In order to finish the proof, we thus need to use the machinery of energy
control for suitable local Leray solutions [LR 2, LR 6]. This will be done in
the following sections, and we shall finish the proof in Section 10 ⋄

8 Weak local Leray solutions

We recall basic results for local weak Leray solutions. We endow L2
uloc with

the norm
‖u‖L2

uloc
= sup

k∈Z3

‖uϕ0(x− k)‖2,

where ϕ0 is a non-negative function in D, suppported in a ball B(0, R0) and
such that

∑

k∈Z3 ϕ0(x− k) = 1.
When ~u0 ∈ L2

uloc, proof of existence of solutions for the Navier–Stokes
equations is based on mollification, energy estimates and compactness argu-
ments (for details, see [LR 6], section 14.1) :

• we solve
∂t~uǫ + (ϕǫ ∗ ~uǫ).~∇~uǫ = ∆~uǫ − ~∇pǫ

with div ~uǫ = 0 and ~uǫ(0, .) = ~u0. Here, ϕ ∈ D,
∫

ϕdx = 1 and

ϕǫ(x) =
1
ǫ3
ϕ(x

ǫ
). Here ~∇pǫ is given by the Leray projection :

~∇pǫ = −(ϕǫ ∗ ~uǫ).~∇uǫ + Pdiv ((ϕǫ ∗ ~uǫ)⊗ ~uǫ) .

• the solution holds at least on an interval (0, Tǫ) where Tǫ depends on

ǫ and on ‖~u0‖L2
uloc

(Tǫ = min(1, C0
ǫ3/2

‖~u0‖2
L2
uloc

). Moreover, we have the

inequalities, for k ∈ Z
3,

∫

ϕ0(x− k)|~uǫ(t, x)|2 dx+ 2

∫ t

0

∫

ϕ0(x− k)|~∇⊗ ~uǫ(s, x)|2 dx ds

≤
∫

ϕ0(x− k)|~u0(t, x)|2 dx+ C1

∫ t

0

∫

|x−k|≤R0

|~uǫ(s, x)|2 dx ds

+ C2

∫ t

0

∫

|x−k|>5R0

1

|x− k|4 |~uǫ(s, x)|3 dx ds

+ C2

∫ t

0

∫

|x−k|<5R0

|~uǫ(s, x)|3 dx ds
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• defining
αǫ(t) = ‖~uǫ(t, .)‖L2

uloc

and

βǫ(t) = sup
k∈Z3

(
∫ t

0

∫

ϕ0(x− k)|~∇⊗ ~uǫ(s, x)|2 dx ds
)1/2

,

we get the inequality

∫

ϕ0(x− k)|~uǫ(t, x)|2 dx+

∫ t

0

∫

ϕ0(x− k)|~∇⊗ ~uǫ(s, x)|2 dx ds

≤ αǫ(0)
2 +

1

2
βǫ(t)

2 + C3

∫ t

0

αǫ(s)
2 ds+ C3

∫ t

0

αǫ(s)
6 ds

so that

βǫ(t)
2 ≤ 2αǫ(0)

2 + 2C3

∫ t

0

αǫ(s)
2 ds+ 2C3

∫ t

0

αǫ(s)
6 ds

and finally

αǫ(t)
2 ≤ 2αǫ(0)

2 + 2C3

∫ t

0

αǫ(s)
2 ds+ 2C3

∫ t

0

αǫ(s)
6 ds

Thus, as long as 8C3t < 1 and 128C3t‖~u0‖4L2
uloc

< 1, we find that

αǫ(t) ≤ 2‖~u0‖L2
uloc

and βǫ(t) ≤ 2‖~u0‖L2
uloc

.

• the solution is then defined on (0,min( 1
8C3

, 1
128C3 ‖~u0‖4

L2
loc

) and controlled

independently from ǫ. By Rellich theorem, wre find a subsequence that
converges strongly in (L2

tL
2
x)loc to a suitable local Leray solution ~u

An important point is the following one : assume moreover that ~u0 ∈
BMO−1

0 and that ‖et∆~u0‖XT
< 1

4C0
(where C0 is the constant of Theorem 1)

then ~uǫ is defined at least on (0, T ) and ‖~uǫ‖XT
≤ 2‖et∆~u0‖XT

. As T does
not depend on ǫ, we see that the local Leray solution ~u satisfies ~u ∈ XS with
S = min(T, 1

8C3
, 1
128C3 ‖~u0‖4

L2
loc

) and ‖~u‖XS
≤ 2‖et∆~u0‖XT

.

Similarly, if we assume that ~u0 ∈ Ḃ−γ
∞,∞ with −1 < −γ < 0, then ~uǫ is

defined at least on (0, T ) where T = C‖~u0‖
2

1−γ

Ḃ−γ
∞,∞

and sup0<t<T t
γ
2 ‖~u(t, .)‖∞ ≤

2 sup0<t<T t
γ
2 ‖et∆~u0‖∞. As T does not depend on ǫ, we see that the local

Leray solution ~u satisfies the inequality sup0<t<S t
γ
2 ‖~u(t, .)‖∞ < +∞ where

S = min(T, 1
8C3

, 1
128C3 ‖~u0‖4

L2
loc

).
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9 Comparison of local weak Leray solutions

If ~u and ~v are two local weak Leray solutions, on (0, T ) with initial values ~u0

and ~v0, we would like to be able to estimate ~u(t, .)−~v(t, .) from the estimation
of ~u0−~v0. This can be done only when at least one of the solutions is regular
enough. We shall assume that ~u ∈ L2

tL
∞
x . We sketch the computations

described in [LR 6], section 14.4.
Define ~w = ~u− ~v,

α(t) = ‖~w(t, .)‖L2
uloc

and

β(t) = sup
k∈Z3

(
∫ t

0

∫

ϕ0(x− k)|~∇⊗ ~w(s, x)|2 dx ds
)1/2

,

Using the suitability of ~v and the regularity of ~v, we find (for 0 < t <
min(1, T ))
∫

ϕ0(x− k)|~w(t, x)|2 dx+

∫ t

0

∫

ϕ0(x− k)|~∇⊗ ~w(s, x)|2 dx ds

≤ α(0)2 +
1

2
β(t)2 + C1

∫ t

0

α(s)2 ds+ C2

∫ t

0

α(s)6 ds+ C3

∫ t

0

‖~u(s, .)‖2∞α(s)2 ds

where the constants Ci do not depend on T , ~u, nor on ~v. Finally, we find

α(t)2 ≤2α(0)2 + 2(C1 + C3(‖~u‖L∞

t L2
uloc

+ ‖~v‖L∞

t L2
uloc

)4)

∫ t

0

α(s)2 ds

+ 2C3

∫ t

0

‖~u(s, .)‖2∞α(s)2 ds.

(6)

We have the same estimate even if ~u is not intregrable near t = 0. Let us
only assume that ~u ∈ L2

tL
∞
x on every (ǫ, T ) with ǫ > 0. Considering a time

t0 > 0 which a Lebesgue point for the functions t 7→
∫

ϕ(x − k)|~u(t, x)|2 dx
and t 7→

∫

ϕ(x − k)|~u(t, x)|2 dx, we have that ~u and ~v are local weak Leray
solutions on (t0, T ) with initial values ~u(t0, .) and ~v(t0, .). Thus, we shall find
that, for t > t0

∫

ϕ0(x− k)|~w(t, x)|2 dx ≤2

∫

ϕ0(x− k)|~w(t0, x)|2 dx

+ 2(C1 + C3(‖~u‖L∞

t L2
uloc

+ ‖~v‖L∞

t L2
uloc

)4)

∫ t

t0

α(s)2 ds

+ 2C3

∫ t

t0

‖~u(s, .)‖2∞α(s)2 ds.

(7)
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It is then enough to let t0 go to 0 and then take the supremum with
respect to k.

10 Proof of Theorem 4

We may now finish the proof. We consider two solutions of the Navier–Stokes
equations with initial value ~u0 ∈ L2 ∩ BMO−1

0 ∩ Ḃ−s

Ṁ1,q ,∞ with −s > −1 + 2
q

(and 3 < q < +∞) : we assume that ~v is a suitable Leray solution and ~u is
the mild solution in XT .

As ~v is suitable, ~v is a local Leray solution as well and we may estimate
the L2

uloc of ~u− ~w : defining B(t) = ‖~u(t, .)− ~v(t, .)‖2
L2
uloc

and

A(t) = 2(C1 + C3(‖~u‖L∞

t L2
uloc

+ ‖~v‖L∞

t L2
uloc

)4) + 2C3‖~u(t, .)‖2∞,

we get

B(t) ≤
∫ t

0

A(s)B(s) ds.

As limt→0 tA(t) = 0, we shall try to apply Lemma 1. Thus, we shall use
interpolation estimates to search for a control of B(t) as O(t−δ), in the spirit
of Lemma 2:.

Recall that we have introduced the following numbers :

• p such that 2 < p < 2q
3

• 1− θ the barycentric coordinate of 1
p
in [1

q
, 1] : 1

p
= (1− θ) + θ 1

q

• −σ the corresponding point in [−1+ 2
q
,−s] : −σ = (1−θ)(−s)+θ(−1+

2
q
)

• −γ such that −1 + 2
q
< −γ < −σ

• r such that p < r < +∞

• 1−η the barycentric coordinate of 1
p
in the segment [1

r
, 1
2
] : 1

p
= 1−η

2
+ η

r

• −ρ the corresponding point in [−γ, 0] : −ρ = η(−γ)

We have the following embeddings :

• B0
2,2 ∩ BMO−1 ⊂ Ḃ

−1+ 2
q

q,q

• Ḃ
−1+ 2

q
q,q ∩ Ḃ−s

Ṁ1,q,∞ ⊂ Ḃ−σ

Ṁp,q ,∞
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• Ḃ
−1+ 2

q
q,q ∩ Ḃ−σ

Ṁp,q,∞ ⊂ Ḃ−γ

Ṁp,q,1
⊂ Ẇ−γ,Ṁp,q

.

• W−γ,Ṁp,q
= [Ṁ2, 2

p
q, Ẇ−ρ,Ṁ

r, rp q

][η]

• [Ṁ2, 2
p
q, Ẇ−ρ,Ṁ

r, rp q

][η] ⊂ [Ṁ2, 2
p
q, Ẇ−ρ,Ṁ

r, rp q

]η,∞ ⊂ [L2
uloc, Ḃ

−ρ− 3p
rq

∞,∞ ]η,∞

If we take r very large, we have η = 1− 2
p
+ o(1) and

−ρ− 3p

rq
= (1− 2

p
)(−γ) + o(1) ∈]− 1, 0[.

Thus far, we have seen that ~u0 ∈ [L2
uloc, Ḃ

−λ
∞,∞]η,∞ for some η ∈ (0, 1) and

some λ ∈ (0, 1). We shall now estimate ~v − et∆~u0 when ~v is a weak local

Leray solution. For 0 < ǫ < 1, split ~u0 in ~αǫ + ~βǫ with

‖~αǫ‖L2
uloc

≤ C0ǫ
η and ‖~βǫ‖Ḃ−λ

∞,∞
≤ C0ǫ

η−1

where C0 does not depend on ǫ (but depends on ~u0).

As βǫ = ~u0 − αǫ, we have ‖~βǫ‖L2
uloc

≤ ‖~u0‖L2
uloc

+C0 (an estimation which
does not depend on ǫ) and we know that we have a (restricted) weak Leray

solution of the Navier–Stokes equations ~Uǫ with initial value ~βǫ such that
sup0<t<T0

‖~Uǫ(t, .)‖L2
uloc

≤ C1, where T0 and C1 depends only on ‖~u0‖L2
uloc

(and not on ǫ).

As βǫ ∈ Ḃ−λ
∞,∞,, we have as well that ‖~Uǫ(t, .)‖∞ ≤ C2t

−λ
2 ǫη−1 on an

interval (0, Tǫ) with T
1−λ
2

ǫ ǫη−1 = C3 It is then easy to check that ‖~Uǫ −
et∆~βǫ‖L2

loc
≤ C4t

(1−λ)/2ǫη−1.
Using our results on comparison of suitable local Leray solutions, we

find that we get the following inequality for ~Wǫ = ~v − ~Uǫ and Aǫ(t) =

supk∈Z3

∫

ϕ0(x− k)| ~Wǫ(t, .x)|2 dx :

Aǫ(t)
2 ≤ 2‖αǫ‖2L2

uloc
+ C5

∫ t

0

Aǫ(s)
2 ds+ C6

∫ t

0

‖~u(s, .)‖2∞Aǫ(s)
2 ds. (8)

Thus, we get

Aǫ(t) ≤ C7ǫ
2η + C8

∫ t

0

Aǫ(s)
2 ds+ C9ǫ

2(η−1)

∫ t

0

s−λAǫ(s)
2 ds.

so that

Aǫ(t) ≤ C7ǫ
2ηeC8teC9ǫ2(η−1) t1−λ

1−λ .
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Now, for τ < 1, take ǫ = τµ with 1−λ
2

+ µ(η − 1) > 0. We find that, for
0 < t < min(Tǫ, T0) with

Tǫ = C
2

1−λ

3 ǫ
2(1−η)
1−λ = C

2
1−λ

3 τµ
2(1−η)
1−λ [ where µ

2(1− η)

1− λ
< 1],

we have the inequality

‖~v − et∆~u0‖L2
uloc

≤‖αǫ‖2 + ‖ ~Wǫ‖2 + ‖~Uǫ − et∆~βǫ‖2

≤C10ǫ
η(1 + e

C11
t1−λ

T
1−λ
ǫ ) + C4t

1−λ
2 ǫη−1

If τ is small enough, we have τ < Tǫ and we find

‖~v(τ, .)− eτ∆~u0‖2 ≤ C0τ
µη(1 + e

C2
1

2(1−λ ) + C4τ
1−λ
2

+µ(η−1)

The theorem is proved.
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[LR 5] P.G. Lemarié–Rieusset, Erratum to “Multipliers and Morrey spaces”,
Potential Anal. 41 (2014), 13591362.
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[Pr] G. Prodi, Un teorema di unicitá per le equazioni di Navier–Stokes, Ann.
Mat. Pura Appl. 48 (1959), 173–182.

[Se] J. Serrin, The initial value problem for the Navier–Stokes equations, in
: Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), Univ. of
Wisconsin Press, Madison, Wis., 1963.

21


