Sub-wavelength sensing of bi-periodic materials using topological sensitivity of second-order homogenized model
Résumé
We aim to detect defects or perturbations of periodic media, e.g. due to a defective manufacturing process. To this end, we consider scalar waves in such media through the lens of a second-order macroscopic description, and we compute the sensitivities of the germane effective parameters due to topological perturbations of a microscopic unit cell. Specifically, our analysis focuses on the tensorial coefficients in the governing mean-field equation – including both the leading order (i.e. quasi-static) terms, and their second-order companions bearing the effects of incipient wave dispersion. Then, we present a method that permits sub-wavelength sensing of periodic media, given the (anisotropic) phase velocity of plane waves illuminating the considered medium for several angles and wavenumbers.
Origine | Publication financée par une institution |
---|