Optimal selection of time-frequency representations for signal classification: A kernel-target alignment approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2006

Optimal selection of time-frequency representations for signal classification: A kernel-target alignment approach

Résumé

In this paper, we propose a method for selecting time-frequency distributions appropriate for given learning tasks. It is based on a criterion that has recently emerged from the machine learning literature: the kernel-target alignment. This criterion makes possible to find the optimal representation for a given classification problem without designing the classifier itself. Some possible applications of our framework are discussed. The first one provides a computationally attractive way of adjusting the free parameters of a distribution to improve classification performance. The second one is related to the selection, from a set of candidates, of the distribution that best facilitates a classification task. The last one addresses the problem of optimally combining several distributions
Fichier principal
Vignette du fichier
06.icassp.pdf (145.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01966060 , version 1 (27-12-2018)

Identifiants

Citer

Paul Honeine, Cédric Richard, Patrick Flandrin, Jean-Baptiste Pothin. Optimal selection of time-frequency representations for signal classification: A kernel-target alignment approach. Proc. 31st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2006, Toulouse, France. ⟨10.1109/ICASSP.2006.1660694⟩. ⟨hal-01966060⟩
44 Consultations
180 Téléchargements

Altmetric

Partager

More