Prediction of Rain Attenuation Series with Discretized Spectral Model - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Prediction of Rain Attenuation Series with Discretized Spectral Model

Résumé

machine learning, adaptive filtering, Spectral model is simple and efficient for modeling the rain attenuation which occurs in satellite communication channels. The prediction of this attenuation series is a vital step for adaptive coding or adaptive power control, which can improve the efficiency of a communication system. In simulation tasks, the discretized spectral model is usually used for generating the attenuation sequence. Due to this reason, in this paper we derive the conditional probability distribution of the predicted attenuation based on the discretized spectral model. This predictor can be used as a bound for others linear or nonlinear predictor of this model.
Fichier principal
Vignette du fichier
12.igarss.rain.pdf (115.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01966022 , version 1 (27-12-2018)

Identifiants

Citer

Jie Chen, Cédric Richard, Paul Honeine, Jean-Yves Tourneret. Prediction of Rain Attenuation Series with Discretized Spectral Model. Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2012, Munich, Germany. pp.2407-2410, ⟨10.1109/IGARSS.2012.6351006⟩. ⟨hal-01966022⟩
101 Consultations
118 Téléchargements

Altmetric

Partager

More