Online One-Class Machines Based on the Coherence Criterion - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Online One-Class Machines Based on the Coherence Criterion

Résumé

In this paper, we investigate a novel online one-class classification method. We consider a least-squares optimization problem, where the model complexity is controlled by the coherence criterion as a sparsification rule. This criterion is coupled with a simple updating rule for online learning, which yields a low computational demanding algorithm. Experiments conducted on time series illustrate the relevance of our approach to existing methods.
Fichier principal
Vignette du fichier
12.eusipco.1c_online.pdf (379.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01966019 , version 1 (27-12-2018)

Identifiants

  • HAL Id : hal-01966019 , version 1

Citer

Zineb Noumir, Paul Honeine, Cédric Richard. Online One-Class Machines Based on the Coherence Criterion. Proc. 20th European Conference on Signal Processing (EUSIPCO), 2012, Bucharest, Romania. pp.664 - 668. ⟨hal-01966019⟩
77 Consultations
54 Téléchargements

Partager

More