Robust hyperspectral unmixing accounting for residual components - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Robust hyperspectral unmixing accounting for residual components

Résumé

This paper presents a new hyperspectral mixture model jointly with a Bayesian algorithm for supervised hyperspectral unmixing. Based on the residual component analysis model, the proposed formulation assumes the linear model to be corrupted by an additive term that accounts for mismodelling effects (ME). The ME formulation takes into account the effect of outliers, the propagated errors in the signal processing chain and copes with some types of endmember variability (EV) or nonlinearity (NL). The known constraints on the model parameters are modeled via suitable priors. The resulting posterior distribution is optimized using a coordinate descent algorithm which allows us to compute the maximum a posteriori estimator of the unknown model parameters. The proposed model and estimation algorithm are validated on both synthetic and real images showing competitive results regarding the quality of the inferences and the computational complexity when compared to the state-of-the-art algorithms.
Fichier principal
Vignette du fichier
16.ssp.robust.pdf (653.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965913 , version 1 (27-12-2018)

Identifiants

Citer

Abderrahim Halimi, Paul Honeine, José Bioucas-Dias. Robust hyperspectral unmixing accounting for residual components. Proc. IEEE workshop on Statistical Signal Processing (SSP), 2016, Palma de Mallorca, Spain. ⟨10.1109/SSP.2016.7551848⟩. ⟨hal-01965913⟩
20 Consultations
90 Téléchargements

Altmetric

Partager

More