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ABSTRACT

This paper presents a new hyperspectral mixture model jointly with
a Bayesian algorithm for supervised hyperspectral unmixing. Based
on the residual component analysis model, the proposed formula-
tion assumes the linear model to be corrupted by an additive term
that accounts for mismodelling effects (ME). The ME formulation
takes into account the effect of outliers, the propagated errors in the
signal processing chain and copes with some types of endmember
variability (EV) or nonlinearity (NL). The known constraints on the
model parameters are modeled via suitable priors. The resulting pos-
terior distribution is optimized using a coordinate descent algorithm
which allows us to compute the maximum a posteriori estimator of
the unknown model parameters. The proposed model and estimation
algorithm are validated on both synthetic and real images showing
competitive results regarding the quality of the inferences and the
computational complexity when compared to the state-of-the-art al-
gorithms.

Index Terms— Hyperspectral imagery, robust unmixing, Bayesian
estimation, coordinate descent algorithm, Gaussian process, gamma
Markov random field

1. INTRODUCTION

Spectral unmixing (SU) is a source separation problem consisting
of recovering the spectral signatures (endmembers) of the materi-
als present in the scene, and quantifying their proportions (abun-
dances) within each hyperspectral image pixel. The linear mixture
model (LMM) is the widely used model for SU mainly because of
its simplicity. However, this model can be inappropriate for some
hyperspectral scenarios, namely in presence of nonlinearity (such as
multiple scattering or intimate mixtures), endmember variability, or
outliers. In addition, the estimated LMM abundances can be badly
affected by the propagated errors in the signal processing chain such
as a bad estimation of the endmembers or their number (especially
under a supervised unmixing, i.e., estimating only the abundances).
These effects emphasize the need for a robust hyperspectral unmix-
ing strategy to deal with these mismodelling effects [1, 2].

This paper introduces a residual component (RC) mixture model
for robust hyperspectral unmixing, the model generalizes the well-
known LMM by accounting for the illumination variation and the
presence of a residual term. This term aims at reducing the effect
of smooth spatial/spectral outliers that can be due to the presence of
NL [3, 4], EV [5] or to signal processing chain errors. Estimating
the abundances associated with this mixture model is a challenging
problem. We propose here a hierarchical Bayesian model to estimate
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the parameters and hyperparameters associated with the RC model.
This hierarchical model introduces prior distributions that enforce
known physical constraints on the estimated parameters such as the
sum-to-one and positivity of the abundances, and the smooth spectral
behavior of the ME. Moreover, the spatial correlation of the resid-
ual term has been introduced by considering Markov random fields
(MRF) [6]. Using the likelihood and the considered prior distribu-
tions, the joint posterior distribution of the unknown parameter vec-
tor is then derived. The minimum mean square error (MMSE) and
maximum a posteriori (MAP) estimators of these parameters cannot
be easily computed from the obtained joint posteriors. In this paper,
the MAP estimator is evaluated by considering a coordinate descent
algorithm (CDA) [7–9] that sequentially updates the abundances, the
noise variances and the residual term. This provides a reduced com-
putational cost when compared to the Markov chain Monte-Carlo
based algorithms [10–12]. The proposed Bayesian model and esti-
mation algorithm are validated using synthetic and real hyperspec-
tral images. The obtained results are very promising and show the
potential of the proposed mixture and Bayesian models and their as-
sociated inference algorithm.

The paper is structured as follows. Section 2 introduces the pro-
posed mixture model to deal with the ME. The proposed hierarchical
Bayesian model and its estimation algorithm are introduced in Sec-
tions 3 and 4. Section 5 is devoted to testing and validating the pro-
posed techniques using synthetic images with known ground truth.
Section 6 shows results obtained using a real hyperspectral image.
Conclusions and future work are finally reported in Section 7.

2. MIXTURE MODEL

The LMM is widely used because of its simplicity. However, there
are a lot of situations where the linear model is not valid because
of the presence of EV, NL or other ME (due to physical outliers or
signal processing errors). This paper proposes a new formulation
based on a residual component model [13] that is expressed as the
sum of a linear model and a residual term. The general observation
model for the (L× 1) pixel spectrum yi,j is given by

yi,j = Si,jai,j + φi,j (Si,j ,ai,j) + ei,j , (1)

where ai,j = (a1,i,j , · · · , aR,i,j)
T is an (R× 1) vector of abun-

dances associated with the pixel (i, j) and satisfying the positiv-
ity and sum-to-one constraints (ar,i,j ≥ 0, ∀r ∈ {1, . . . , R}
and

∑R
r=1 ar,i,j = 1), R is the number of endmembers, ei,j ∼

N (0L,Σ) is an additive centered Gaussian noise with a diagonal
covariance matrix Σ = diag

(
σ2
)
, σ2 =

(
σ2
1 , · · · , σ2

L

)T is an
(L× 1) vector containing the noise variances, L is the number of
spectral bands, Si,j(M) = Si,j is the endmember matrix that de-
pends on each pixel to introduce EV effect,M is a fixed endmember



matrix that is assumed known (extracted using an endmember ex-
traction algorithm) and φi,j (Si,j ,ai,j) is a residual term that might
depend on the endmembers or the abundances to model NL or EV
effects.

This paper accounts for mismodelling effects or the presence
of outliers by considering a residual term φME

i,j = di,j that shows
spatial and spectral correlations. Moreover, it accounts for the illu-
mination variation effect by consideringSi,j = ci,jM . Under these
considerations, the observation model (1) reduces to

yi,j = ci,jMai,j + di,j + ei,j , (2)

where di,j is an L × 1 smooth spectral vector. This term gathers
the shape EV effects that can be approximated by a smooth function
as already highlighted in [14]. It also gathers the multiple scattering
NL effects when the endmembers are themselves smooth. We refer
the reader to [14] for more details about the relation between (2) and
other NL and EV models, and the possible interpretations of di,j .
Note that model (2) reduces to the LMM when di,j = 0L, and
ci,j = 1, ∀i, j. Note also that other models have been introduced in
the literature to account for the effect of outliers such as [1] which
proposed spatial/spectral correlated outliers by considering discrete
MRF and [2] which proposed positive-sparse outliers that have no
spatial or spectral correlation. In contrast to [10, 11] that deal only
with NL effect, and [12] that deals with EV, model (2) considers both
effects at the same time.

3. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model to estimate the
unknown parameter vector Θ =

(
A, c,D,σ2, ε

)
, where A (resp.

D) gathers all the abundance vectors (resp. residual terms), and ε is
a hyperparameter described later in the text.

3.1. Likelihood

Using the observation model (1), the Gaussian properties of the noise
sequence ei,j , and exploiting independence between the observa-
tions in different spectral bands, yield the following Gaussian distri-
bution for the likelihood

yi,j |ai,j , ci,j ,di,j ,Σ ∼ N
(
µi,j ,Σ

)
. (3)

where µi,j = ci,jMai,j + di,j and ∼ means “is distributed ac-
cording to”. The independence between the observed pixels leads to
f(Y |Θ) =

∏
i

∏
j f(yi,j |ai,j , ci,j ,di,j ,Σ), where Y gather all

the pixels.

3.2. Parameter priors

This section introduces the prior distributions that we have chosen
for the parameters of interestA, c,D and Σ.

3.2.1. Abundance matrixA

Due to the positivity and sum-to-one (PSTO) constraints, the abun-
dance vector should live in the following simplex

S =

{
ai,j

∣∣ar,i,j ≥ 0,∀r and
R∑

r=1

ar,i,j = 1

}
. (4)

Since there is no additional information about this parameter vector,
we propose to assign a uniform prior in the simplex S to the abun-
dances [15, 16].

3.2.2. Prior for c

The variation in illumination is introduced by the parameter ci,j that
is pixel-dependent. In many works, this parameter has been fixed to
the value #1, which represents the absence of illumination variabil-
ity [16–18]. In others the sum-to-one (STO) was relaxed leading to
an unconstrained parameter ci,j (free in R). In this paper, we relax
the STO constraint but include some prior knowledge on ci,j . In-
deed, we allow this parameter to fluctuate around #1 by considering
a conjugate Gaussian prior as follows

ci,j ∼ N
(
1, η2

)
, (5)

where η2 is a small fixed variance (η2 = 0.01 in the rest of the
paper). For simplicity, we denote “x|θ ∼ ...”, by “x ∼ ...” when
the parameter θ is a user fixed parameter. Note finally that the joint
prior of c is obtained by assuming a priori independence between
the coefficients ci,j , as follows f (c) =

∏
i,j f (ci,j).

3.2.3. Mismodelling coefficients di,j

The smooth property of the vector di,j is introduced by considering
a conjugate Gaussian prior as follows

di,j |ε2i,j ∼ N
(
0L, ε

2
i,jH

)
, (6)

where H is the squared-exponential covariance function given by

H(`, `′) = exp

[
− (`−`′)2

(L/2)2

]
, which introduces the spectral smooth-

ness on di,j . A spatial correlation is also introduced by enforcing
a smooth variation of the residual energies

(
dT
i,jH

−1di,j

)
. This

is achieved by considering a specific prior for ε2i,j , as explained in
Section 3.3. Finally the joint prior of D is obtained by assuming
a priori independence between the mismodelling coefficients, i.e.,
f (D|ε) =

∏
i,j f

(
di,j |ε2i,j

)
.

3.2.4. Noise variances

The noise variances are assigned a conjugate inverse gamma distri-
bution given by

f
(
σ2) = L∏

`=1

f
(
σ2
`

)
, with σ2

` ∼ IG (ϕ`, ψ`) , (7)

where σ2
` are assumed a priori independent. The hyperparameters

ϕ` and ψ` are fixed to approximate the HySime estimated variances
[19]. Note finally that the parameters can also be set to ϕ` = ψ` = 0
in absence of prior knowledge about σ2

` , leading to a noninformative
Jeffreys’ prior.

3.3. Hyperparameter priors

Due to the spatial organization of hyperspectral images, we expect
the energies of the mismodelling coefficients di,j to vary smoothly
from one pixel to another. This behavior is obtained by introducing
an auxiliary variablew (of sizeNrow×Ncol) and assigning a gamma
Markov random field prior for (ε,w) (see [6, 10] for more details
regarding this prior). This prior ensures that each ε2i,j is connected
to four neighbor elements of w and vice-versa (see Fig. 1). The
energies ε2i,j are conditionally independent and the 1st order neigh-
bors (i.e., the spatial correlation) is only introduced via the auxiliary
variables w. An interesting property of this joint prior is that the
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Fig. 1. Proposed 1st order gamma-MRF neighborhood structure.

conditional prior distributions of ε and w reduce to conjugate in-
verse gamma (IG) and gamma (G) distributions as follows

ε2i,j |w, ζ ∼ IG (4ζ, 4ζρ1,i,j(w)) ,

w2
i,j |ε, ζ ∼ G (4ζ, 1/(4ζρ2,i,j(ε))) , (8)

where

ρ1,i,j(w) = (w2
i,j + w2

i+1,j + w2
i,j+1 + w2

i+1,j+1)/4,

ρ2,i,j(ε) = (ε−2
i,j + ε−2

i−1,j + ε−2
i,j−1 + ε−2

i−1,j−1)/4, (9)

and ζ is a fixed coupling parameter that controls the amount of spa-
tial smoothness enforced by the gamma-MRF.

3.4. Posterior distributions

The joint posterior distribution of the hierarchical Bayesian model
can be computed from the following Bayes’ rule

f (Θ|Y ) ∝ f(Y |Θ)f (A) f
(
σ2) f (c) f (D|ε) f (ε,w) , (10)

where ∝ means “proportional to” and we have assumed a priori in-
dependence between the parameters of each model. The MMSE and
MAP estimators associated with the posterior (10) are not easy to
determine. In this paper, and akin to [9], we propose to evaluate the
MAP estimator by using an optimization technique maximizing the
posterior (10) w.r.t. the parameters of interest.

4. COORDINATE DESCENT ALGORITHM

Because of the large number of parameters to estimate, we propose
a coordinate descent algorithm [7–9] that sequentially updates the
different parameters. In each step of the proposed CDA-ME algo-
rithm, the posterior distribution is maximized w.r.t. one parameter,
the other being fixed. Thus, the algorithm iteratively updates each
parameter by maximizing its conditional distribution as follows (see
[14] for more details regarding the conditional distributions):

• Conditional of A: truncated Gaussian distribution (whose
one maximum is obtained with SUNSAL-FCLS1 [18])

1SUNSAL-FCLS satisfies the PSTO constraints while SUNSAL-CLS
only ensure the positivity constraint.

• Conditional of D: Gaussian distribution (analytical expres-
sion of the mean)

• Conditional of ε : inverse gamma distribution (analytical ex-
pression of the maximum)

• Conditional ofw : gamma distribution (analytical expression
of the maximum)

• Conditional of σ2 : inverse gamma distribution (analytical
expression of the maximum)

• Conditional of c: Gaussian distribution (analytical expression
of the mean)

Regarding the sequence generated by the coordinate descent algo-
rithm, the proposition 2.7.1 in [7] asserts that its limit points are
stationary points of (10) provided that the maximum of that function
w.r.t. Θ along each coordinate is unique. This is easily checked for
all the parameters since they have unimode conditional distributions
(Gaussian, gamma and inverse gamma distributions). Note however
that the cost function is not convex, thus, the solution obtained might
depend on the initial values that need to be chosen carefully. There-
fore, the abundances A are initialized with SUNSAL-FCLS [18],
the residual terms are initialized by 0, the noise variance is initial-
ized by HySime [19], the illumination coefficient c is initialized by
considering the sum of the abundances that are estimated using only
the positivity constraint with SUNSAL-CLS [18]. With these ini-
tializations, the proposed algorithm reached minima of “good qual-
ity” in the considered simulations (see Sections 5 and 6). Thus, the
CDA algorithm constitutes a good balance between computational
efficiency (obtained by solving the simple problems associated with
each descent step) and the quality of the solution (experimentally
observed when considering a good initialization).

5. SIMULATION RESULTS ON SYNTHETIC DATA

Four synthetic images of size 100 × 100 pixels and L = 207 spec-
tral bands were generated using R = 3 endmembers extracted from
the ENVI software library [20]. All images were corrupted by i.i.d.
Gaussian noise for a fair comparison with SU algorithms using this
assumption. The images were generated using different mixture
models. The first image I1 is composed of LMM pixels. The sec-
ond image I2 is composed of a mixture of the LMM and 3 nonlinear
models (K = 4 spatial classes were generated using a Potts-MRF
with granularity parameter β = 0.8). The third image I3 is parti-
tioned into 4 spatial classes (the same partition map as for I2). In
each class, the pixels were generated according to the LMM while
using a different set of spectra associated with the same 3 materi-
als, to study the EV effect. The fourth image I4 is partitioned into
K = 2 classes using a Potts-MRF. The pixels of the first class were
generated according to the RCA-ME model (2) with ε2 = 0.002.
The pixels of the second class were generated with 4 endmembers
to simulate the effect of a bad estimation of the number of endmem-
bers. The abundances are uniformly distributed in the simplex S for
I1. However, to simulate a highly mixed scenario, the abundances
of I2, I3 and I4 are clustered inside the simplex using a Dirichlet
distribution whose parameters are selected randomly in the interval
[1, 20]. The illumination coefficient c varies in [0.9, 1.15] for all im-
ages. Table 1 compares the proposed CDA-ME algorithm with the
FCLS [17], SUNSAL-CLS [18], SKHype [21], and RCA-MCMC
[11] algorithms. Note that SUNSAL-CLS approximates the varia-
tion of illumination by relaxing the sum-to-one constraint. The cri-
teria used are the distance between the actual and estimated abun-
dances RMSE (A) =

√
1

N R

∑N
n=1 ‖an − ân‖2, the reconstruc-



tion error: RE =
√

1
N L

∑N
n=1 ‖ŷn − yn‖

2 and the spectral an-

gle mapper SAM = 1
N

∑N
n=1 arccos

(
ŷT
nyn

‖yn‖ ‖ŷn‖

)
criteria, where

arccos(·) is the inverse cosine operator and yn, ŷn denotes the
#nth measured and estimated pixel spectra. CDA-ME provides the
best performance for the LMM, EV and ME based images while
it shows good performance in presence of NL effects. These re-
sults highlight the robustness of CDA-ME to the different effects
that can affect hyperspectral images. Finally, apart from the LMM
based algorithms (FCLS and SUNSAL-CLS), the proposed CDA-
ME always provides the fastest results.

Table 1. Results on synthetic images.
(×10−2) Time

RMSE RE SAM (s)

I1

FCLS 7.78 3.58 6.24 1.2
SUNSAL-CLS 3.42 2.27 5.62 0.1

(LMM, SKHype 1.41 − − 541

K = 1)
RCA-MCMC 4.31 − − 6737

CDA-ME 1.35 2.27 5.62 88

I2

FCLS 24.76 15.74 10.64 1.7
SUNSAL-CLS 16.55 4.17 7.57 0.07

(LMM, NL SKHype 5.87 − − 547

K = 4)
RCA-MCMC 5.66 − − 9009

CDA-ME 6.61 2.89 6.17 37

I3

FCLS 10.22 2.91 6.0 1.3
SUNSAL-CLS 10.16 2.53 5.93 0.14

(EV, SKHype 7.69 − − 623

K = 4)
RCA-MCMC 13.33 − − 11025

CDA-ME 4.29 2.35 5.51 316

I4

FCLS 12.59 5.01 7.19 1.21
SUNSAL-CLS 12.65 2.91 6.94 0.12

(RCA-ME, SKHype 11.68 − − 374

K = 2)
RCA-MCMC 18.20 − − 6029

CDA-ME 6.07 2.29 5.56 315

6. RESULTS ON REAL DATA

This section illustrates the performance of CDA-ME when applied
to a real hyperspectral image. The considered image, denoted as
Madonna, was acquired in 2010 by the Hyspex hyperspectral scan-
ner over Villelongue, France (00 03’W and 4257’N). The dataset
contains L = 160 spectral bands recorded from the visible to near
infrared (400 − 1000nm) with a spatial resolution of 0.5m [22].
It has already been studied in [12, 23] and is mainly composed of
forested areas (see Fig. 2 (top)). This image contains 100 × 100
pixels and is composed of R = 4 components: tree, grass, soil and
shadow. The Bayesian UsLMM algorithm [24] was used to estimate
R = 4 endmembers. The estimated CDA-ME abundance maps are
in good agreement with the state-of-the-art algorithms and are not
shown here for brevity. Fig. 2 (middle-right) shows the energies of
the difference between the reconstructed signal and the linear model
(i.e., ||ŷi,j −Mâi,j ||) . It is clear from Fig. 2 (middle-right) that
the MEs are mainly located in regions with multiple physical compo-
nents, and in presence of relief (near trees) where multiple scattering
effect might occurs. These energies are in good agreement with the
nonlinear coefficients estimated using the RCA-MCMC algorithm
as shown in Fig. 2 (middle-left). However, in contrast to RCA-
MCMC that interprets these energies as nonlinearities, the proposed
CDA-ME highlights the presence of an illumination variation (see

Fig. 2 (bottom-left)) and an additional residual term (see Fig. 2
(bottom-right)). Note that the residual term gathers NL, EV and out-
lier effects and is mainly located near the trees. To summarize, this
section shows that the CDA-ME algorithm captures similar spatial
residual effects than RCA-MCMC but gives a different interpreta-
tion. Most of these residuals appear in region of intersection be-
tween the physical elements and in presence of vegetation such as
trees. CDA-ME is very flexible and can capture different physical
effects such as NL, EV and outliers. Note finally that more details
regarding the CDA-ME results, including the processing of another
real image (the Moffett scene), are provided in [14] and not shown
here for brevity.

Fig. 2. Top: Real Madonna image. Middle-left: nonlinearities co-
efficients estimated using the RCA-MCMC algorithm [11]. Middle-
right: Square root of the energies of the difference between the re-
constructed signal and the linear model for the proposed CDA-ME
algorithm (||ŷi,j −Mâi,j ||). Bottom-left: estimated illumination
variation |1−ci,j | for the CDA-ME algorithm. Bottom-right: square
root of the energies of the residual terms ‖di,j‖ for the CDA-ME al-
gorithm.

7. CONCLUSIONS

This paper introduced a hyperspectral mixture model and its asso-
ciated Bayesian algorithm for robust hyperspectral unmixing. The
proposed model was introduced under a general formulation that
can be adapted to account for other physical effects. A hierarchical
Bayesian model was proposed to introduce the known constraints
on their parameters. Those parameters were estimated using a coor-
dinate descent algorithm that showed a reduced computational cost
when compared to state-of-the-art algorithms. The proposed algo-
rithm showed good performance when processing synthetic data gen-
erated with the linear model or other more sophisticated models. Re-
sults on real data confirmed the good performance of the proposed
algorithm and showed its ability to extract different features in the
observed scenes. Future work includes the detection of the presence
of outliers using hypothesis tests.
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