Classification paramétrique multi-classes à croyance - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Classification paramétrique multi-classes à croyance

Paul Honeine

Résumé

The aim of parametric classification is to predict the target class of a new sample, under the hypothesis of known fitted distribution. A major drawback of this approach is the uncertainty due to the imprecise modeling of the training samples. For this purpose, a belief functions framework is provided to take into account uncertainties. The proposed method investigates the belief functions theory to assign a confidence weight to each class for any new sample. This approach yields a confidence-weighted parametric classification method for multi-class problems. The performance of the proposed method is validated by experiments on real data for indoor localization and for facial image recognition.
Fichier principal
Vignette du fichier
17.gretsi.croyance.pdf (127.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965911 , version 1 (27-12-2018)

Identifiants

  • HAL Id : hal-01965911 , version 1

Citer

Daniel Alshamaa, Farah Mourad-Chehade, Paul Honeine. Classification paramétrique multi-classes à croyance. Actes du 26-ème Colloque GRETSI sur le Traitement du Signal et des Images, 2017, Juan-Les-Pins, France. ⟨hal-01965911⟩
40 Consultations
48 Téléchargements

Partager

More