Optimizing time-frequency representations for signal classification using radially Gaussian kernels
Distribution temps-fréquence à paramétrisation radialement Gaussienne optimisée pour la classification
Résumé
Cet article traite de l’optimisation des distributions temps-fréquence pour la résolution de problèmes de classification de signaux. On s’intéresse en particulier à la distribution à fonction de paramétrisation radialement gaussienne, que l’on ajuste par optimisation de l’alignement noyau-cible. Initialement développé pour la sélection de noyau reproduisant en Machine Learning, ce critère présente l’intérêt de ne nécessiter aucun cycle d’apprentissage. On montre que l’on peut obtenir la fonction de paramétrisation radialement gaussienne maximisant celui-ci en détournant une technique classique de réduction de termes interférentiels dans les représentations temps-fréquence. On illustre l’efficacité de cette approche à l’aide d’expérimentations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|