Non-negative least-mean-square algorithm - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2011

Non-negative least-mean-square algorithm

Résumé

Dynamic system modeling plays a crucial role in the development of techniques for stationary and nonstationary signal processing. Due to the inherent physical characteristics of systems under investigation, nonnegativity is a desired constraint that can usually be imposed on the parameters to estimate. In this paper, we propose a general method for system identification under nonnegativity constraints. We derive the so-called nonnegative least-mean-square algorithm (NNLMS) based on stochastic gradient descent, and we analyze its convergence. Experiments are conducted to illustrate the performance of this approach and consistency with the analysis.
Fichier principal
Vignette du fichier
11.tsp.nnlms_prefinal.pdf (797.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965584 , version 1 (03-01-2019)

Identifiants

Citer

Jie Chen, Cédric Richard, José C. M. Bermudez, Paul Honeine. Non-negative least-mean-square algorithm. IEEE Transactions on Signal Processing, 2011, 59 (11), pp.5225 - 5235. ⟨10.1109/TSP.2011.2162508⟩. ⟨hal-01965584⟩
83 Consultations
1074 Téléchargements

Altmetric

Partager

More