Online kernel principal component analysis: a reduced-order model - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Pattern Analysis and Machine Intelligence Année : 2012

Online kernel principal component analysis: a reduced-order model

Résumé

Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based version of Oja's rule, initially put forward to extract a linear principal axe. As with most kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions with the reduced-order model. We derive a recursive algorithm to discover the first principal axis, and extend it to multiple axes. Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic data set and on images of handwritten digits, with comparison to classical kernel-PCA and iterative kernel-PCA.
Fichier principal
Vignette du fichier
12.tpami.onlineKPCA_draft.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965581 , version 1 (04-01-2019)

Identifiants

Citer

Paul Honeine. Online kernel principal component analysis: a reduced-order model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (9), pp.1814 - 1826. ⟨10.1109/TPAMI.2011.270⟩. ⟨hal-01965581⟩
174 Consultations
1239 Téléchargements

Altmetric

Partager

More