Multiclass classification machines with the complexity of a single binary classifier - Archive ouverte HAL
Article Dans Une Revue Signal Processing Année : 2013

Multiclass classification machines with the complexity of a single binary classifier

Résumé

In this paper, we study the multiclass classification problem. We derive a framework to solve this problem by providing algorithms with the complexity of a single binary classifier. The resulting multiclass machines can be decomposed into two categories. The first category corresponds to vector-output machines, where we develop several algorithms. In the second category, we show that the least-squares classifier can be easily cast into a multiclass one-versus-all scheme, without the need to train multiple binary classifiers. The proposed framework shows that, while keeping the classification accuracy essentially unchanged, the computational complexity is orders of magnitude lower than those previously reported in the literature. This makes our approach extremely powerful and conceptually simple. Moreover, we study the coding of the multiclass labels, and demonstrate that several celebrated approaches are equivalent. These arguments are illustrated with experimentations on well-known benchmarks.
Fichier principal
Vignette du fichier
13.sp.multiclass.pdf (311.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01965575 , version 1 (26-12-2018)

Identifiants

Citer

Paul Honeine, Zineb Noumir, Cédric Richard. Multiclass classification machines with the complexity of a single binary classifier. Signal Processing, 2013, 93 (5), pp.1013 - 1026. ⟨10.1016/j.sigpro.2012.11.009⟩. ⟨hal-01965575⟩
51 Consultations
329 Téléchargements

Altmetric

Partager

More