Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Geoscience and Remote Sensing Année : 2017

Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

Fei Zhu
  • Fonction : Auteur
Abderrahim Halimi
  • Fonction : Auteur
  • PersonId : 953254
Paul Honeine

Résumé

In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully constrained unmixing, with both the nonnegativity and sum-to-one constraints, while the second one deals with the nonnegativity and the sparsity promoting of the abundances. The corresponding optimization problems are solved using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing with ADMM is particularly robust against highly noisy outlier bands.
Fichier principal
Vignette du fichier
17.corr_admm.pdf (4.42 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01965043 , version 1 (24-12-2018)

Identifiants

  • HAL Id : hal-01965043 , version 1

Citer

Fei Zhu, Abderrahim Halimi, Paul Honeine, Badong Chen, Nanning Zheng. Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (9), pp.1-12. ⟨hal-01965043⟩
42 Consultations
89 Téléchargements

Partager

More