Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations With Random Sweeping II: Mean-Square and Linear Convergence - Archive ouverte HAL
Article Dans Une Revue Mathematical Programming Année : 2019

Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations With Random Sweeping II: Mean-Square and Linear Convergence

Résumé

Reference [11] investigated the almost sure weak convergence of block-coordinate fixed point algorithms and discussed their applications to nonlinear analysis and optimization. This algorith-mic framework features random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and it allows for stochastic errors in the evaluation of the operators. The present paper establishes results on the mean-square and linear convergence of the iterates. Applications to monotone operator splitting and proximal optimization algorithms are presented.
Fichier principal
Vignette du fichier
mp4.pdf (325.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01964582 , version 1 (22-12-2018)

Identifiants

  • HAL Id : hal-01964582 , version 1

Citer

Patrick L Combettes, Jean-Christophe Pesquet. Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations With Random Sweeping II: Mean-Square and Linear Convergence. Mathematical Programming, 2019, 174 (1-2), pp.433-451. ⟨hal-01964582⟩
96 Consultations
50 Téléchargements

Partager

More