Linear convergence of stochastic block-coordinate fixed point algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Linear convergence of stochastic block-coordinate fixed point algorithms

Résumé

Recent random block-coordinate fixed point algorithms are particularly well suited to large-scale optimization in signal and image processing. These algorithms feature random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and they allow for stochastic errors in the evaluation of the operators. The present paper provides new linear convergence results. These convergence rates are compared to those of standard deter-ministic algorithms both theoretically and experimentally in an image recovery problem.
Fichier principal
Vignette du fichier
eusipco2018.pdf (4.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01964580 , version 1 (22-12-2018)

Identifiants

Citer

Patrick L Combettes, Jean-Christophe Pesquet. Linear convergence of stochastic block-coordinate fixed point algorithms. European Signal and Image Processing Conference (EUSIPCO 2018), Sep 2018, Rome, Italy. ⟨10.23919/EUSIPCO.2018.8552941⟩. ⟨hal-01964580⟩
67 Consultations
153 Téléchargements

Altmetric

Partager

More