Electron flow in large metallomacromolecules and electronic switching of nanoparticle stabilization: Click ferrocenyl dentromers that reduce AuIII to Au nanoparticles
Résumé
Click ferrocenyl-terminal dentromers, a family of arene-cored dendrimers with triple branching (9-Fc, 27-Fc, 81-Fc, and 243-Fc), reduce AuIII to ferricinium dentromer-stabilized Au nanoparticles (AuNPs). Cyclic voltammetry studies in CH2Cl2 show reversible CV waves with some adsorption for the 243-Fc dentromer and the number of redox groups found, 255±25, by using the Bard–Anson method, is close to the theoretical number of 243. The dentromers reduce aqueous HAuCl4 to water-soluble ferricinium chloride dentromer-stabilized AuNPs with core sizes between 30 and 47 nm. These triazolylferricinium dentromer-stabilized AuNPs are reduced by cobaltocene to cobalticinium chloride and ferrocene dentromer weakly stabilized AuNPs together with a redshift of the AuNP plasmon. The weakness of the AuNP stabilization is characterized by dentromer extraction with CH2Cl2 along with irreversible AuNP agglomeration for the 9, 27, and 81-ferrocenyl dentromer, with only the 243-ferrocenyl dentromer-AuNP withstanding this process. Altogether, this demonstrates the electronic switching of the dentromer-mediated AuNP stabilization.