Optofluidic sensor engineering towards plutonium concentration measurements - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2017

Optofluidic sensor engineering towards plutonium concentration measurements

Résumé

Research in nuclear safety and fuel reprocessing has led to a surging need for novel chemical analysis tools with reduced analyte and effluent volumes. Recent technological advances for the elaboration and packaging of glass optofluidic co - integrated sensors have opened up the way for said analysis in harsh environments. We discuss a sensor engineering approach for the construction of an integrated absorption spectrometer with an ion-exchange core. Pu(VI) oxidation state exhibits a major absorption peak at a wavelength of 831 nm with a molar absorption coefficient of 545 L.mol-1.cm-1. An evanescent waveguiding sensing structure that allows guided fluid/light interaction is investigated in order to provide absorption spectroscopy measurements. The work presented consists of optical simulations as well as experimental measurements. Waveguide engineering with respects to modal transmission, field/fluid interaction coefficient Γ and device losses is presented. The simulations are carried out by computing ion-exchanged waveguide refractive index distribution and using it in mode solver software. Device optical characterization and bench tests are carried out to verify approach viability. First device measurements of a neodymium absorption peak in nuclear manipulation conditions are displayed.
Fichier principal
Vignette du fichier
101060U-4.pdf (1.47 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01961680 , version 1 (02-10-2019)

Identifiants

Citer

T. Allenet, F. Geoffray, Davide Bucci, L. Guillerme, F. Canto, et al.. Optofluidic sensor engineering towards plutonium concentration measurements. SPIE OPTO, 2017, San Francisco, United States. pp.101060U, ⟨10.1117/12.2252190⟩. ⟨hal-01961680⟩
89 Consultations
62 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More