Thinning and Multilevel Monte Carlo for Piecewise Deterministic (Markov) Processes. Application to a stochastic Morris-Lecar model - Archive ouverte HAL
Article Dans Une Revue Advances in Applied Probability Année : 2020

Thinning and Multilevel Monte Carlo for Piecewise Deterministic (Markov) Processes. Application to a stochastic Morris-Lecar model

Résumé

In the first part of this paper we study approximations of trajectories of Piecewise Deter-ministic Processes (PDP) when the flow is not explicit by the thinning method. We also establish a strong error estimate for PDPs as well as a weak error expansion for Piecewise Deterministic Markov Processes (PDMP). These estimates are the building blocks of the Multilevel Monte Carlo (MLMC) method which we study in the second part. The coupling required by MLMC is based on the thinning procedure. In the third part we apply these results to a 2-dimensional Morris-Lecar model with stochastic ion channels. In the range of our simulations the MLMC estimator outperforms the classical Monte Carlo one.
Fichier principal
Vignette du fichier
preprint.pdf (448.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01960702 , version 1 (19-12-2018)

Identifiants

Citer

Vincent Lemaire, Michéle Thieullen, Nicolas Thomas. Thinning and Multilevel Monte Carlo for Piecewise Deterministic (Markov) Processes. Application to a stochastic Morris-Lecar model. Advances in Applied Probability, 2020, 52 (1), pp.138-172. ⟨10.1017/apr.2019.55⟩. ⟨hal-01960702⟩
151 Consultations
85 Téléchargements

Altmetric

Partager

More