Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames
Résumé
Many applications of machine learning involve the analysis of large data frames-matrices collecting heterogeneous measurements (binary, numerical, counts, etc.) across samples-with missing values. Low-rank models, as studied by Udell et al. [30], are popular in this framework for tasks such as visualization, clustering and missing value imputation. Yet, available methods with statistical guarantees and efficient optimization do not allow explicit modeling of main additive effects such as row and column, or covariate effects. In this paper, we introduce a low-rank interaction and sparse additive effects (LORIS) model which combines matrix regression on a dictionary and low-rank design, to estimate main effects and interactions simultaneously. We provide statistical guarantees in the form of upper bounds on the estimation error of both components. Then, we introduce a mixed coordinate gradient descent (MCGD) method which provably converges sub-linearly to an optimal solution and is computationally efficient for large scale data sets. We show on simulated and survey data that the method has a clear advantage over current practices, which consist in dealing separately with additive effects in a preprocessing step.
Domaines
Autres [stat.ML]
Fichier principal
LORIS_2018_supplementary.pdf (539.31 Ko)
Télécharger le fichier
imput_loris_softImpute_cat_variables.pdf (4.68 Ko)
Télécharger le fichier
imput_loris_softImpute_quant_variables.pdf (4.59 Ko)
Télécharger le fichier
imputation.pdf (4.44 Ko)
Télécharger le fichier
imputation2.pdf (4.55 Ko)
Télécharger le fichier
impute_loris_softImpute_all_var.pdf (4.5 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|