Conference Papers Year : 2018

Learning with SGD and Random Features

Abstract

Sketching and stochastic gradient methods are arguably the most common techniques to derive efficient large scale learning algorithms. In this paper, we investigate their application in the context of nonparametric statistical learning. More precisely, we study the estimator defined by stochastic gradient with mini batches and random features. The latter can be seen as form of nonlinear sketching and used to define approximate kernel methods. The considered estimator is not explicitly penalized/constrained and regularization is implicit. Indeed, our study highlights how different parameters, such as number of features, iterations, step-size and mini-batch size control the learning properties of the solutions. We do this by deriving optimal finite sample bounds, under standard assumptions. The obtained results are corroborated and illustrated by numerical experiments.
Fichier principal
Vignette du fichier
imgs/RFroofSUSY.pdf (26.21 Ko) Télécharger le fichier
05_experiments.tex (4.77 Ko) Télécharger le fichier
SGM_with_Random_Features.pdf (697.33 Ko) Télécharger le fichier
imgs/MBssHIGGS.pdf (57 Ko) Télécharger le fichier
imgs/MBssSUSY.pdf (39.2 Ko) Télécharger le fichier
imgs/RFroofHIGGS.pdf (30.5 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-01958906 , version 1 (18-12-2018)

Identifiers

Cite

Luigi Carratino, Alessandro Rudi, Lorenzo Rosasco. Learning with SGD and Random Features. Advances in Neural Information Processing Systems, Dec 2018, Montreal, Canada. pp.10213--10224. ⟨hal-01958906⟩
81 View
201 Download

Altmetric

Share

More