Precised approximations in elliptic homogenization beyond the periodic setting - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2020

Precised approximations in elliptic homogenization beyond the periodic setting

Xavier Blanc
Marc Josien

Résumé

We consider homogenization problems for linear elliptic equations in divergence form. The coecients are assumed to be a local perturbation of some periodic background. We prove $W^{1,p}$ and Lipschitz convergence of the two-scale expansion, with explicit rates. For this purpose, we use a corrector adapted to this particular setting, and dened in [10, 11], and apply the same strategy of proof as Avellaneda and Lin in [1]. We also propose an abstract setting generalizing our particular assumptions for which the same estimates hold.
Fichier principal
Vignette du fichier
article.pdf (517.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01958207 , version 1 (17-12-2018)

Identifiants

Citer

Xavier Blanc, Marc Josien, Claude Le Bris. Precised approximations in elliptic homogenization beyond the periodic setting. Asymptotic Analysis, 2020, 116 (2), pp.93-137. ⟨10.3233/ASY-191537⟩. ⟨hal-01958207⟩
288 Consultations
209 Téléchargements

Altmetric

Partager

More