Two Guaranteed Equilibrated Error Estimators for Harmonic Formulations in Eddy Current Problems - Archive ouverte HAL
Article Dans Une Revue Computers & Mathematics with Applications Année : 2019

Two Guaranteed Equilibrated Error Estimators for Harmonic Formulations in Eddy Current Problems

Résumé

In this paper, two guaranteed equilibrated error estimators are proposed and compared for the 3D harmonic magnetodynamic problem of Maxwell's system. This system is recasted in the classical A − ϕ potential formulation or, equivalently , in the T − Ω potential formulation, and it is solved by the Finite Element method. The first equilibrated estimator presented is built starting from these two complementary problems, the other one is built starting from the A − ϕ numerical solution uniquely by a flux reconstruction technique. The equivalence between errors and estimators is established. Afterwards, an analytical benchmark test illustrates the obtained theoretical results and a physical benchmark test shows the efficiency of these two estimators.
Fichier principal
Vignette du fichier
CMNPT18.pdf (1.22 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01955692 , version 1 (14-12-2018)

Identifiants

Citer

Emmanuel Creusé, Yvonnick Le Menach, Serge Nicaise, Francis Piriou, Roberta Tittarelli. Two Guaranteed Equilibrated Error Estimators for Harmonic Formulations in Eddy Current Problems. Computers & Mathematics with Applications, 2019, 77 (6), pp.1549-1562. ⟨10.1016/j.camwa.2018.08.046⟩. ⟨hal-01955692⟩
83 Consultations
190 Téléchargements

Altmetric

Partager

More