Max-Min Lyapunov Functions for Switching Differential Inclusions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Max-Min Lyapunov Functions for Switching Differential Inclusions

Résumé

We use a class of locally Lipschitz continuous Lyapunov functions to establish stability for a class of differential inclusions where the set-valued map on the right-hand-side comprises the convex hull of a finite number of vector fields. Starting with a finite family of continuously differentiable positive definite functions, we study conditions under which a function obtained by max-min combinations over this family of functions is a Lyapunov function for the system under consideration. For the case of linear systems, using the S-Procedure, our conditions result in bilinear matrix inequalities. The proposed construction also provides nonconvex Lyapunov functions, which are shown to be useful for systems with state-dependent switching that do not admit a convex Lyapunov function.
Fichier principal
Vignette du fichier
maxminsmall.pdf (314.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01951377 , version 1 (11-12-2018)

Identifiants

Citer

Matteo Della Rossa, Aneel Tanwani, Luca Zaccarian. Max-Min Lyapunov Functions for Switching Differential Inclusions. 57th IEEE- Conference on Decision and Control (CDC 2018), Dec 2018, Miami, United States. ⟨10.1109/CDC.2018.8619690⟩. ⟨hal-01951377⟩
198 Consultations
472 Téléchargements

Altmetric

Partager

More