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Max-Min Lyapunov Functions for Switching Differential Inclusions

Matteo Della Rossa Aneel Tanwani Luca Zaccarian

Abstract— We use a class of locally Lipschitz continuous
Lyapunov functions to establish stability for a class of differ-
ential inclusions where the set-valued map on the right-hand-
side comprises the convex hull of a finite number of vector
fields. Starting with a finite family of continuously differentiable
positive definite functions, we study conditions under which a
function obtained by max-min combinations over this family
of functions is a Lyapunov function for the system under
consideration. For the case of linear systems, using the S-
Procedure, our conditions result in bilinear matrix inequalities.
The proposed construction also provides nonconvex Lyapunov
functions, which are shown to be useful for systems with state-
dependent switching that do not admit a convex Lyapunov
function.

I. INTRODUCTION

The construction of Lyapunov functions is one of the cen-
tral ingredients in the stability analysis of switching dynami-
cal systems, or hybrid systems, and several approaches exist
in the literature to address this problem. In this paper, we
are interested in providing a procedure for the construction
of common Lyapunov functions for systems which involve
switching among several vector fields.

For the system class we are interested in, let us consider a
finite number of dynamical subsystems described by ordinary
differential equations (ODEs) of the form ẋ = fi(x), where
i ∈ {1, 2, . . . ,m}, and each fi : Rn → Rn is locally Lips-
chitz continuous. To model the evolution of state-trajectories
resulting from switching arbitrarily among these dynamical
subsystems, we consider the differential inclusion (DI)

ẋ ∈ co
{
fi(x) | i ∈ {1, . . . ,m}

}
(1)

where co{S} denotes the closed convex-hull of the set S. The
DI in (1) indeed results from an appropriate regularization of
the switching dynamics (see Section V for some details). The
problem of interest is to construct a Lyapunov functions for
system (1) which guarantees stability of the origin {0} ⊂ Rn.

For the linear differential inclusion (LDI) case (that is
fi(x) = Aix for some Ai ∈ Rn×n) it is shown in [1], [2]
that asymptotic stability is equivalent to the existence of a
common Lyapunov function that is convex, homogeneous
of degree 2, and C1(Rn,R). Many ways to approximate
this kind of functions have been studied, for example the
maximum of quadratic functions and its convex conjugates
[3], [4], and polyhedral functions [2], [5].

In this article, we propose another class of Lyapunov
functions for system (1). We consider a finite family of
continuously differentiable positive definite functions, and
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obtain a candidate Lyapunov function by taking the maxi-
mum, minimum, or the combination of both; see Definition 3
for details. Such max-min type of Lyapunov functions were
recently proposed in the context of discrete-time switching
systems [6], [7]. In this article, we investigate the feasibility
and utility of max-min Lyapunov functions, for differential
inclusion and switching systems in continuous-time, which
naturally require certain additional tools from nonsmooth and
set-valued analysis. Our main results provide a set of inequal-
ities whose feasibility guarantees the existence of a max-min
Lyapunov function for system (1). When restricting ourselves
to the linear case with fi(x) = Aix, the proposed conditions
require solving bilinear matrix inequalities (BMIs). It should
be noted that, since we allow for the minimum operation
in the construction, certain elements in our proposed class
of Lyapunov functions are nonconvex. For the linear DI
problem, it has been observed in [3, Proposition 2.2] that the
convexification of any non-convex Lyapunov function is still
a Lyapunov function. In our approach, when we construct a
homogeneous of degree 2 nonconvex Lyapunov function for
the LDI problem, a convexification of such functions also
provides a Lyapunov function.

The situation is different when the system is embedded
with a given switching function σ : Rn → {1, . . . ,m},
resulting in

ẋ = fσ(x)(x). (2)
Indeed, it is possible that the switched system (2) is asymp-
totically stable but there does not exist a convex Lyapunov
function, see [8]. It is possible to provide sufficient con-
ditions for a minimum of quadratics (clearly non-convex)
to be a Lyapunov function in this context [9], [10]. When
addressing this system class, our approach provides a more
general class of nonconvex Lyapunov functions.

II. A MOTIVATING EXAMPLE

To provide a motivation for the class of Lyapunov func-
tions constructed in this paper, we consider a system for
which we will construct a max-min Lyapunov function.

Example 1. Consider a linear switching system with three
subsystems and a state-dependent switching rule x 7→
σ(x) ∈ {1, 2, 3}. We consider matrices

A1 =
[−0.1 1
−5 −0.1

]
, A2 =

[−0.1 5
−1 −0.1

]
, A3 =

[
1.9 3
−3 −2.1

]
and the system

ẋ = Aσ(x)x. (3)
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Fig. 1. The blue line shows a trajectory of system (3) starting from z0.
The dashed line indicates a level set of max-min Lyapunov function (4).

To suitably define switching signal σ, we introduce
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[
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Q3 :=
[

1
√
2√

2 1

]
and the switching signal

σ(x) =


1 if x ∈ S1 := {x>Q1x > 0} ∪ S13,
2 if x ∈ S2 := {x>Q2x > 0} ∪ S21,
3 if x ∈ S3 := {x>Q3x > 0} ∪ S32,

where the switching surfaces Sij , 1 ≤ i, j ≤ 3, i 6= j are

S13 :=
{
x ∈ R2 |x2 = −(1 +

√
2)x1

}
,

S21 :=
{
x ∈ R2 |x2 = −x1

}
,

S32 :=
{
x ∈ R2 |x2 = −1/(1 +

√
2)x1

}
.

We note that S1 ∪ S2 ∪ S3 = R2 and S1 ∩ S2 ∩ S3 = {0}.
A Poincaré type of reasoning suggests that the origin is

asymptotically stable: the trajectories showed in Figure 1
are shield-shaped inward spirals. Moreover one can formally
prove that there does not exist a convex Lyapunov function
for system (3), see [11]. In Section V, we will provide a
Lyapunov function for this system of the form

V (x) = max
{

min{x>P1x, x
>P2x}, x>P3x

}
. (4)

III. MAX-MIN LYAPUNOV FUNCTION

We now address the problem of stability analysis for
system (1). We first state some definitions and a known
result, which are then used to state our first main result.

A. Background and notation
Definition 1. For system (1), with fi(0) = 0 for all i ∈
{1, . . . ,m}, the origin {0} is asymptotically stable (AS) if:

1) (Stability) For each ε > 0 there exists δ(ε) > 0
such that for every solution x(t) of (1) that satisfies
|x(0)| < δ(ε), it holds that |x(t)| < ε for all t > 0;

2) (Attractivity) There exists M > 0 such that for every
solution x(t) that satisfies |x(0)| < M , it holds that
limt→∞ |x(t)| = 0.

If property 2) is true for every M > 0, then we say that {0}
is globally asymptotically stable (GAS).

It is well known that the asymptotic stability can be proved
via Lyapunov-based techniques. Our proposed construction
is based on functions that are not everywhere differentiable,
so we need the following notion of generalized gradients.

Definition 2. Let U : Rn → R be a locally Lipschitz
continuous function. The generalized directional derivative
of U at x along v ∈ Rn, denoted U0(x; v), is defined as

U0(x; v) := lim sup
y→x;h→0+

U(y + hv)− U(y)

h
.

We say that ζ ∈ Rn belongs to the generalized gradient of
U at x, denoted ζ ∈ ∂U(x), if

U0(x; v) ≥ ζ>v, ∀v ∈ Rn.

It is obvious that if U is continuously differentiable then
U0(x; v) = ∇U(x)>v and ∂U(x) = ∇U(x).

Lemma 1. Suppose that there exist a locally Lipschitz
function V : Rn → R, and a class K function1 γ such
that

1) V (0) = 0,
2) V (x) > 0, for all x 6= 0,
3) For each x ∈ Rn, and for each i ∈ {1, . . . ,m},

sup
ζ∈∂V (x)

ζ>fi(x) ≤ −γ(|x|). (5)

Then the origin of system (1) is AS, and V is called a
Lyapunov function for (1). If, in addition, V is radially
unbounded, that is, V (x) → ∞ if |x| → ∞, then system
(1) is GAS.

The above result relates asymptotic stability with the ex-
istence of a nonsmooth Lyapunov function. For the technical
details regarding the generalized gradient and the proof of
Lemma 1, we suggest [12, Proposition 5.3], [13]. We next
propose a class of functions which under certain conditions
will be shown to satisfy the hypotheses of Lemma 1.

Definition 3. Given K functions V1, . . . VK ∈ C1(Rn,R),
we define a max-min function VMm : Rn → R as

VMm(x) := max
j∈{1,...,J}

{
min
k∈Sj
{Vk(x)}

}
, (6)

where S1, . . . , SJ are subsets of {1, . . . ,K}, i.e. Sj ⊂
{1, . . . ,K}, ∀j ∈ {1, . . . , J}.

We will denote by Mm(V1, . . . , VK) the set of all the pos-
sible max-min functions obtained from functions V1, . . . , VK .

Definition 4. Given V ∈ Mm(V1, . . . , VK) we can con-
struct a map αV : Rn ⇒ {1, . . . ,K} defined as follows:

αV (x) :=

{
` | ∀ neighborhood U ofx,∃V ⊂ U open

s.t. V (z) = V`(z),∀z ∈ V

}
. (7)

Intuitively the set-valued map αV captures the fact that
every point x ∈ Rn is “surrounded” by regions where the

1A function γ : R≥0 → R≥0 is of class K if γ(0) = 0, γ is continuous
and increasing.



function V is continuously differentiable and equal to V`, for
some `. As an example, consider P1, P2 > 0, P1 6= P2, and
the function V (x) = max{x>P1x, x

>P2x}, which leads to
αV (x) = {1, 2} when x>P1x = x>P2x.

B. Stability result

Our goal is to provide conditions under which a max-min
function of type (6) is a Lyapunov function for system (1).

Theorem 1. Consider the DI (1), and given K positive-
definite functions V1, . . . , VK ∈ C1(Rn,R), consider a max-
min function V ∈Mm{V1, . . . , VK}. If there exists a class
K function γ such that for all x ∈ Rn, and for all i ∈
{1, . . . ,m}

∇V`(x)>fi(x) ≤ −γ(|x|), ∀ ` ∈ αV (x), (8)

then (1) is AS and V is a Lyapunov function for system (1).
Moreover, if each Vj is radially unbounded, then (1) is GAS.

Proof. First of all, from definition (6), it is seen that V is
positive-definite and V (0) = 0. Furthermore, V is locally
Lipschitz continuous by construction and for such functions

∂V (x) = co

{
lim
k→∞

∇V (xk) |xk → x, xk /∈ N , xk /∈ S
}
,

(9)
where N ⊂ Rn is the set of zero measure where ∇V is not
defined, and S ⊂ Rn is any other set of measure zero; see
[14, Theorem 2.5.1, on page 63]. Using (9), we will show
that

∂V (x) = co{∇V`(x) | ` ∈ αV (x)}, (10)

whence (5) in Lemma 1 follows. Indeed, if (10) holds,
then for a given x ∈ Rn, let us suppose that αV (x) =
{`1, . . . , `p}. For each v ∈ ∂V (x) there exist λ1, . . . , λp ≥ 0,∑p
j=1 λj = 1, such that v =

∑p
j=1 λj∇V`j (x). Conse-

quently, for each i ∈ {1, . . . ,m}, (8) yields

v>fi(x) =

p∑
j=1

λj∇V`j (x)>fi(x) ≤ −γ(|x|).

Thus, under condition (8), V ∈ Mm{V1, . . . , VK} satisfies
the first three conditions listed in Lemma 1, which shows
that V is a Lyapunov function for system (1). For GAS, if
every Vj , j ∈ {1, . . . ,K}, is radially unbounded, then so is
V . To complete the proof, it remains to show that (9) implies
(10). We study two cases to show this implication.

Case 1: Consider x ∈ Rn such that αV is constant in
an open neighborhood Ux of x. Then, for each x ∈ Ux,
V`i(x) = V`j (x), for each `i, `j ∈ αV (x). Since each Vj ,
j ∈ {1, . . . ,K} is differentiable, we have that ∇V (x) =
∇V`i(x), for each `i ∈ αV (x), and x ∈ Ux. Thus, for each
x ∈ Ux, (9) yields

∂V (x) = ∇V (x) = ∇V`(x) (11)

for some ` ∈ αV (x).
Case 2: Let S be the set of points x̃ ∈ Rn such that αV

is not constant in any neighborhood of x̃. By definition of
αV it is seen that for a fixed x̃ ∈ S, and a small enough

neighborhood Ux̃ of x̃ (where αV is not constant), we can
find a finite family of disjoint open sets Vi such that αV
is constant on each Vi, αV (x̃) =

⋃
i αV (Vi) and Ux̃ \ S =⋃

i Vi. Hence, it follows from (9) and (11) that

∂V (x̃) = co{∇V`(x̃) : ` ∈ αV (x̃)}. (12)

The statement (10) indeed follows from (11) and (12).

C. Linear Case

For the linear differential inclusion

ẋ(t) ∈ co{Aix(t) | i ∈ {1, . . . ,m}}, (13)

we can restrict our search for a Lyapunov function with
degree of homogeneity 2, and thus we can consider the max-
min function obtained from quadratic forms.

Definition 5. Given K symmetric and positive definite
matrices P1, . . . PK ∈ Rn×n, the max-min of quadratics is
defined as

V (x) = max
j∈{1,...,J}

{
min
k∈Sj

{
x>Pkx

}}
, (14)

where Sj ⊂ {1, . . . ,K}, ∀j ∈ {1, . . . , J}.
As a corollary to Theorem 1, we work out constructive

conditions under which the max-min of quadratics is a
Lyapunov function for (13). To rewrite inequalities (8) of
Theorem 1 as bilinear matrix inequalities (BMI), we now re-
call how the multiple S-procedure works. Let P0, P1, . . . , PK
be symmetric matrices. If ∃ τ1, . . . , τK ≥ 0 such that P0 −∑K
j=1 τjPj > 0 then

for each x satisfying x>P1x ≥ 0 ∧ · · · ∧ x>PKx ≥ 0,

it holds that x>P0x > 0.

For a recent survey of the S-procedure, see [15]. We denote
by SK the group of all possible permutations of K elements.
We note that when we have K quadratics P1, . . . , PK , we
can partition the space Rn as union of symmetric cones, that
is Rn =

⋃
ρ∈SK Cρ where, given ρ = (j1, . . . , jK) ∈ SK ,

we define

Cρ :=
{
x ∈ Rn | x>Pj1x ≤ · · · ≤ x>PjKx

}
. (15)

It is observed that the map αV is constant in the interior of
Cρ, so we write αV (Cρ) instead of αV (x) for x ∈ int(Cρ).

Corollary 1. Consider system (13) and the function V in
(14) described by the max-min of K quadratic forms. If, for
each i ∈ {1, . . . ,m}, and for each ρ = (j1, . . . , jK) ∈ SK ,
there exist τj1 , . . . , τjK−1

≥ 0 such that

A>i P`+ P`Ai+

K−1∑
k=1

τjk(Pjk+1
− Pjk) < 0, (16)

∀` ∈ αV (Cρ), then system (13) is GAS.

Proof. By the S-procedure, inequality (16) implies that for
every nonzero x ∈ Cρ

x>(A>i P` + P`Ai)x < 0, ∀` ∈ αV (Cρ).



Since (16) holds for every ρ ∈ SK , by denoting Vj(x) =
x>Pjx, j ∈ {1, . . . ,K}, we get, for all i ∈ {1, . . . ,m} and
for all x ∈ Rn,

∇V`(x)>Aix < 0, ∀` ∈ αV (x).

The conditions of Theorem 1 are thus satisfied.

It is noted that, in general, since |SK | = K!, finding
a Lyapunov function for system (13) using (16) requires
solving m ·K! inequalities, which involve m(K−1)K! non-
negative scalars and K symmetric positive-definite matrices.
It is clear that the computational burden grows quickly as
function of K. We show in the next section that the required
inequalities can be reduced for certain max-min functions.

IV. THREE QUADRATICS CASE

In this section, we analyze some max-min functions of 3
quadratics defined by positive-definite and symmetric matri-
ces P1, P2 and P3. It can be taken as a simple useful model to
underline some remarks and how the number of inequalities
resulting from the S-procedure depends on the choice of the
max-min composition. With an abuse of notation, we will
write min{Pi, Pj} instead of min{x>Pix, x>Pjx}. The set
Mm{P1, P2, P3} has the following elements:
• Common Lyapunov function: V = max{min{Pi}};
• Min of 2 quadratics: V = max{min{Pi, Pj}};
• Max of 2 quadratics: V = max{min{Pi},min{Pj}};
• Min of 3 quadratics: V = max{min{P1, P2, P3}};
• Max of 3 quadratics:

V = max{min{P1},min{P2},min{P3}};
• Quasi-max functions:

V = max {min{P1},min{P2, P3}} ;

• Quasi-min functions:
V = max {min{P1, P3},min{P2, P3}} ;

• Mid-of-quadratics function:
V = max {min{P1, P2},min{P2, P3}min{P1, P3}} .

Our interest particularly lies in the last three cases
because the remaining cases can be obtained more
simply by considering maximum or minimum of (3
or less) quadratic functions. Moreover the cases of
quasi-max and quasi-min are in some sense dual as
we observe that max {min{Pi, Pk},min{Pj , Pk}} =
min {Pk,max{Pi, Pj}}.
A. Comparison of Max Construction with Other Results

Let us consider the max function V = max{P1, P2, P3}.
Without loss of generality, we write down only the inequal-
ities corresponding to the regions where x>P3x has the
maximum value. We want to show that the two inequalities,
corresponding to a fixed i ∈ {1, . . . ,m}, can be reduced to
a single inequality, and hence the total computational burden
can be reduced from 6m to 3m inequalities.

Lemma 2. Denote A := Ai for a fixed i ∈ {1, . . . ,m}.
Consider the following statements:
(I1) ∃ τ21, τ32 ≥ 0 such that A>P3+P3A+τ21(P2−P1)+

τ32(P3 − P2) < 0.

(I2) ∃ τ12, τ31 ≥ 0 such that A>P3+P3A+τ12(P1−P2)+
τ31(P3 − P1) < 0.

(I3) ∃λ1, λ2 ≥ 0 such that A>P3 +P3A+λ1(P3−P1) +
λ2(P3 − P2) < 0.

Then, it holds that (I1) ∧ (I2) ⇐⇒ (I3).

Proof. (I1) ∧ (I2) ⇒ (I3). If τ21 = 0 then (I3) holds with
λ1 = 0 and λ2 = τ32. The case τ12 = 0 is analogous. If
τ21 6= 0, τ12 6= 0 it suffices to multiply the inequality in
item (I1) by 1

τ21
, then add it to the inequality given in (I2)

multiplied by 1
τ12

to arrive at (I3).
(I3)⇒ (I1) ∧ (I2): Let us take λ1 and λ2 such that A>P3 +
P3A+ λ1(P3 − P1) + λ2(P3 − P2) < 0. We have

A>P3 + P3A+ λ1(P3 − P1) + λ2(P3 − P2)± λ2P1 =

A>P3 + P3A+ (λ1 + λ2)(P3 − P1) + λ2(P1 − P2) < 0,

that is precisely the inequality in (I2). The inequality in (I1)
can be derived with the same argument.

With this Lemma we have recovered the sufficient con-
ditions for computing Lyapunov function via the max of
quadratics, given in [3, Corollary 4.4], while using the more
general framework of max-min functions.

B. Mid of 3 Quadratics

Let us consider the mid of quadratics described by

V = max {min{P1, P2},min{P2, P3},min{P3, P1}} .
We have called this function mid of quadratics because, for
every x ∈ Rn, it takes the value x>P`x such that x>Pjx ≤
x>P`x ≤ x>Pkx, where i, k, ` are different. Condition
(16) in Corollary 1, for a fixed i, in this case becomes:
∃ τ12, τ13, τ21, τ23, τ31, τ32,τ̃12, τ̃13, τ̃21, τ̃23, τ̃31, τ̃32 ≥ 0
such that
(123) A>i P2 + P2Ai + τ21(P2 − P1) + τ32(P3 − P2) < 0,
(132) A>i P3 + P3Ai + τ31(P3 − P1) + τ23(P2 − P3) < 0,
(213) A>i P1 + P1Ai + τ12(P1 − P2) + τ̃31(P3 − P1) < 0,
(231) A>i P3 + P3Ai + τ̃32(P3 − P2) + τ13(P1 − P3) < 0,
(312) A>i P1 + P1Ai + τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0,
(321) A>i P2 + P2Ai + τ̃23(P2 − P3) + τ̃12(P1 − P2) < 0.

We have enumerated the inequalities using the triplets
(j1j2j3), which correspond to the cone where x>Pj1x ≤
x>Pj2x ≤ x>Pj3x. This is the worst case: we can not
regroup any inequalities, and 6m inequalities involving 12m
non-negative scalars must be solved.

C. Quasi-Max Function

In this case, we consider the function described as
V = max {min{P1},min{P2, P3}} .

The conditions given by (16), for a given i ∈
{1, . . .m}, are in this case: ∃τ12, τ13, τ21, τ23, τ31, τ32,
τ̃12, τ̃13, τ̃21, τ̃23, τ̃31, τ̃32 ≥ 0 such that
(123) A>P2 + P2A+ τ21(P2 − P1) + τ32(P3 − P2) < 0,
(132) A>P3 + P3A+ τ31(P3 − P1) + τ23(P2 − P3) < 0,
(213) A>P1 + P1A+ τ12(P1 − P2) + τ̃31(P3 − P1) < 0,
(231) A>P1 + P1A+ τ̃32(P3 − P2) + τ13(P1 − P3) < 0,
(312) A>P1 + P1A+ τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0,



(321) A>P1 + P1A+ τ̃23(P2 − P3) + τ̃12(P1 − P2) < 0.
Reasoning as in Lemma 2 it easy to note that inequalities
(231), (321), (213) are equivalent to the single inequality

∃ λ̃ ≥ 0 s.t. A>P1 + P1A+ λ̃(P1 − P2) < 0.

This way, we can rewrite the sufficient condi-
tions for the quasi-max Lyapunov function as:
∃ τ21, τ23, τ31, τ32, τ̃21, τ̃31, λ̃ ≥ 0 such that
(123) A>P2 + P2A+ τ21(P2 − P1) + τ32(P3 − P2) < 0,
(132) A>P3 + P3A+ τ31(P3 − P1) + τ23(P2 − P3) < 0,
(312) A>P1 + P1A+ τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0,

(4) A>P1 + P1A+ λ̃(P1 − P2) < 0.
Note that, for every i ∈ {1, . . . ,m}, we have just one more
inequality (involving just one more non-negative scalar) as
compared to the max of quadratics case.

D. An Illustrative Example

Concluding this section, we consider an example intro-
duced in [1] to show that existence of a common quadratic
Lyapunov function is not necessary for asymptotic stability
of a LDI. This example is also studied in [4, Example 2],
where a max-of-quadratics Lyapunov functions is proposed.
Example 2. Let us consider the LDI problem

ẋ(t) ∈ co{A1x(t), A2(a)x(t)}, where

A1 =

[
−1 −1
1 −1

]
, A2(a) =

[
−1 −a
1/a −1

]
,

and a > 0 is a scalar. It is proved in [1], using trajectory-
based analysis, that the system admits a common quadratic
Lyapunov function for 1 < a < 3 +

√
8. Here, we show

how considering max-min candidate Lyapunov functions
improves the estimates of the parameter a for which the
system is asymptotically stable. For simplicity in the table
we have marked the maximal a for which the set of BMI’s
corresponding to a particular max-min composition is feasi-
ble, that is the maximal a for which we can prove stability
using a particular type of functions.

CLF Max of 2 Min of 2
amax 3 +

√
8 8.10 6.78

Quasi-max Quasi-min Max of 3
amax 8.32 8.02 8.89

Feasibility of BMIs has been checked with the help of the
PENBMI solver for MATLAB. It turns out that, for this
system, the choice of purely max function gives the best
estimates of the parameter. In [4], it is shown that taking the
max of 7 quadratics, one can prove stability until a = 10.108.

V. SWITCHING SYSTEMS

We now focus our attention to system (2). Let
f1, . . . , fm ∈ C1(Rn,Rn), the class of switching signals that
we consider for system (2) is introduced in the following
Assumption 1. There exist finitely many connected sets
D1, . . . DN ⊂ Rn described as

Dj := {x ∈ Rn |Sj(x) > 0;Sj : Rn → R is analytic},

for j = 1, . . . , N , such that σ is constant on each Dj , and⋃
j Dj = Rn, and

⋂
j Dj = ∅.

Thus, given f1, . . . , fm ∈ C1(Rn,Rn) and σ : Rn →
{1, . . . ,m} with Assumption 1, we can define a piecewise
locally Lipschitz continuous function f sw : Rn → Rn

f sw(x) = fσ(x)(x). (17)

Definition 6. Given f sw : Rn → Rn, and the system

ẋ(t) = f sw(x(t)), x(0) = x0 (18)

we define the set valued Filippov regularization

ẋ ∈ Ff sw(x) :=
⋂
ε>0

⋂
µ(N )=0

co
{
f sw(Bε(x) \ N )

}
(19)

where µ(N ) is the Lebesgue measure of N ⊂ Rn. We say
that x : R→ Rn is a Filippov solution of system (18) if

1) x is absolutely continuous, with x(0) = x0,
2) ẋ(t) ∈ Ff sw(x(t)) for almost all t > 0.

For the vector field in (17), the computation of Ff sw

simplifies as observed in [16], and is summarized below:

Proposition 1. Consider the vector field f sw in (17) with σ
satisfying Assumption 1. Introduce the set-valued map J :
Rn ⇒ {1, . . . ,m} as

J(x̃) := {j | ∀ ε > 0,∃x ∈ Bε(x̃) s.t. σ(x) = j} .
It then holds that

Ff sw(x) = co{fj(x) | j ∈ J(x)}. (20)

A. General stability result

Proposition 2. Consider system (2), and a switching law
σ : Rn → {1, . . . ,m} satisfying Assumption 1. Let us
consider K positive-definite and C1 functions V1, . . . , VK
such that Vj(0) = 0 ∀j. If, for a max-min function V ∈
Mm{V1, . . . , VK}, and every x ∈ Rn, there exists γ ∈ K
such that

∇V`(x)>f ≤ −γ(|x|), ∀ ` ∈ αV (x), ∀f ∈ Ff sw(x), (21)

then V is a Lyapunov function for system (19).

Proof. The condition (21), as in the proof of Theorem 1
leads to

v>f ≤ −γ(|x|), ∀f ∈ Ff sw(x), x ∈ Rn

for all v ∈ ∂V (x), where ∂V (x) is given in (12). Thus V is
a Lyapunov function for the Filippov regularization (19).

We underline that these conditions ensure the convergence
to the origin even in the presence of the so-called sliding
motion. If we can a priori rule out the sliding motion then
requiring condition (21) is conservative, in the next subsec-
tion we propose stability conditions under this assumption.

B. Linear switching systems with conic regions

Given A1, . . . , Am ∈ Rn×n, let us consider the linear
switching system



ẋ = Aσ(x)x, where σ : Rn → {1, . . . ,m}, (22)

where σ satisfies Assumption 1 with Dj given by

Dj = {x ∈ Rn | x>Qjx > 0}, (23)

where Qj is a symmetric matrix, for j ∈ {1, . . . , N}. We
suppose that no sliding motion occurs along the switching
surface, that is the set where σ is not constant.
In order to provide a max-min Lyapunov function, ho-
mogenous of degree 2, we will choose positive-definite and
symmetric matrices P1, . . . , PK such that resulting max-min
function is non-differentiable only on the switching surfaces.
In other words, we choose P1, . . . , PK such that, ∀ρ ∈ SK

Cρ ⊂ Dj , for some j ∈ {1, . . . , N}, (24)

where Cρ is defined by (15), and thus σ takes a constant
value in the interior of Cρ for every ρ, denoted by σ(Cρ).

Proposition 3. Consider system (22) satisfying Assumption 1
and Dj satisfying (23). Let P1, . . . , PK > 0 be such that (24)
holds for each ρ ∈ SK , and let V be a max-min of quadratics
V as in (14). If, for each ρ = (j1, . . . , jK) ∈ SK , there exist
τj1 , . . . , τj(K−1)

≥ 0 such that

A>σ(Cρ)P` + P`Aσ(Cρ) +

K−1∑
k=1

τjk(Pjk+1
− Pjk) < 0,

for all ` ∈ αV (Cρ), then V is a Lyapunov function of (22).

Proof. Since there are no sliding motions, for every state
trajectory x(t) of the system (22) there exists a well defined
sequence of switching time 0 = t0 < t1 < t2 < . . . , < tk . . .
for which σ(x(·)) is constant on the intervals (tk−1, tk), for
every k ∈ N. Using S-procedure, we have, for each x ∈ Cρ,

x>
(
A>σ(Cρ)P` + P`Aσ(Cρ)

)
x < −γ|x|2, for all ` ∈ αV (x)

for some γ > 0. Consider an interval (tk−1, tk) we have

V (x(tk)) < exp (−δ(tk−1 − tk))V (x(tk−1)).

Because V decays exponentially between two consecutive
switches, the result follows from [17, Theorem 3.1].

Example 1 Continued. We have already proved that there
does not exist a convex Lyapunov function for the system
(3). As every system trajectory “rotates” in the clockwise
direction, so no motion occurs along the switching lines
S12,S23,S31, see Fig. 1. Consider the matrices

P1 = [ 5 0
0 1 ], P2 = [ 1 0

0 5 ], P3 = [ 3 2
2 3 ],

and the max-min function

V (x) = max
{

min{x>P1x, x
>P2x}, x>P3x

}
. (25)

We want to show that V satisfies the conditions given in
Proposition 3. We have to checking the inequalities:

1) A>2 P2 + P2A2 + λ1(P2 − P3) + λ2(P1 − P2) < 0,
2) A>1 P1 + P1A1 + λ3(P1 − P3) + λ4(P2 − P1) < 0,
3) A>3 P3 + P3A3 + λ5(P3 − P1) < 0,
4) A>3 P3 + P3A3 + λ6(P3 − P2) + λ7(P1 − P3) < 0.

Using numerical solvers (PENBMI for MATLAB),
it follows that inequalities hold with λ̄ =
(0.258, 0.102, 0.258, 0.102, 0.284, 0.193, 0.090), so this
max-min of quadratics is a Lyapunov function for the
system (3) and hence, the system is GAS. A level set of
this function is plotted in Fig. 1.

VI. CONCLUSIONS

Considering the DI problem, we introduced a family of
nonsmooth functions obtained by max-min combination. We
proposed sufficient conditions under which an element of
this family is a Lyapunov function. We also studied the utility
of max-min functions for state-dependent switching systems.
We illustrated stability using a max-min function by checking
the feasibility of a set of BMIs. Further generalizations
of stability conditions using max-min functions have been
reported in [11]. Possible avenue for future research is the
generalization of this approach to a wider class of systems,
for example hybrid systems.
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