Minimal Energy for the Traveling Waves of the Landau--Lifshitz Equation - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2014

Minimal Energy for the Traveling Waves of the Landau--Lifshitz Equation

Résumé

We consider nontrivial finite energy traveling waves for the Landau--Lifshitz equation with easy-plane anisotropy. Our main result is the existence of a minimal energy for these traveling waves, in dimensions two, three, and four. The proof relies on a priori estimates related to the theory of harmonic maps and the connection of the Landau--Lifshitz equation with the kernels appearing in the Gross--Pitaevskii equation.

Dates et versions

hal-01951344 , version 1 (11-12-2018)

Identifiants

Citer

André de Laire. Minimal Energy for the Traveling Waves of the Landau--Lifshitz Equation. SIAM Journal on Mathematical Analysis, 2014, 46 (1), pp.96-132. ⟨10.1137/130909081⟩. ⟨hal-01951344⟩
49 Consultations
0 Téléchargements

Altmetric

Partager

More