Dirichlet process mixtures under affine transformations of the data - Archive ouverte HAL
Article Dans Une Revue Computational Statistics Année : 2021

Dirichlet process mixtures under affine transformations of the data

Résumé

Location-scale Dirichlet process mixtures of Gaussians (DPM-G) have proved extremely useful in dealing with density estimation and clustering problems in a wide range of domains. Motivated by an astronomical application, in this work we address the robustness of DPM-G models to affine transformations of the data, a natural requirement for any sensible statistical method for density estimation. First, we devise a coherent prior specification of the model which makes posterior inference invariant with respect to affine transformation of the data. Second, we formalise the notion of asymptotic robustness under data transformation and show that mild assumptions on the true data generating process are sufficient to ensure that DPM-G models feature such a property. Our investigation is supported by an extensive simulation study and illustrated by the analysis of an astronomical dataset consisting of physical measurements of stars in the field of the globular cluster NGC 2419.
Fichier principal
Vignette du fichier
ArXiv_v2_preview.pdf (1.44 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01950652 , version 1 (11-12-2018)
hal-01950652 , version 2 (06-01-2020)

Identifiants

Citer

Julyan Arbel, Riccardo Corradin, Bernardo Nipoti. Dirichlet process mixtures under affine transformations of the data. Computational Statistics, 2021, 36, pp.577-601. ⟨10.1007/s00180-020-01013-y⟩. ⟨hal-01950652v2⟩
142 Consultations
161 Téléchargements

Altmetric

Partager

More