SELECTION OF A STOCHASTIC LANDAU-LIFSHITZ EQUATION AND THE STOCHASTIC PERSISTENCE PROBLEM - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 2019

SELECTION OF A STOCHASTIC LANDAU-LIFSHITZ EQUATION AND THE STOCHASTIC PERSISTENCE PROBLEM

Yasmina Kheloufi
  • Fonction : Auteur
Khadra Nachi

Résumé

In this article, we study the persistence of properties of a given classical deter-ministic dierential equation under a stochastic perturbation of two distinct forms: external and internal. The rst case corresponds to add a noise term to a given equation using the framework of Itô or Stratonovich stochastic dierential equations. The second case corresponds to consider a parameters dependent dierential equations and to add a stochastic dynamics on the parameters using the framework of random ordinary dierential equations. Our main concerns for the preservation of properties is stability/instability of equilibrium points and symplectic/Poisson Hamiltonian structures. We formulate persistence theorem in these two cases and prove that the cases of external and internal stochastic perturbations are drastically dierent. We then apply our results to develop a stochastic version of the Landau-Lifshitz equation. We discuss in particular previous results obtain by Etore and al. in [P. 'Etore, S.Labbe , J. Lelong, Long time behaviour of a stochastic nanoparticle, J. Differential Equations 257 (2014), 2115-2135] and we nally propose a new family of stochastic Landau-Lifshitz equations.
Fichier principal
Vignette du fichier
landau-lishitz-1.pdf (2.54 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01950607 , version 1 (14-12-2018)

Identifiants

Citer

Jacky Cresson, Yasmina Kheloufi, Khadra Nachi, Frédéric Pierret. SELECTION OF A STOCHASTIC LANDAU-LIFSHITZ EQUATION AND THE STOCHASTIC PERSISTENCE PROBLEM. Journal of Mathematical Physics, 2019, ⟨10.1063/1.5085214⟩. ⟨hal-01950607⟩
86 Consultations
106 Téléchargements

Altmetric

Partager

More