Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Magnetics Année : 2017

Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations

Résumé

Among the model order reduction techniques, the Proper Orthogonal Decomposition (POD) has shown its efficiency to solve magnetostatic and magneto-quasistatic problems in the time domain. However, the POD is intrusive in the sense that it requires the extraction of the matrix system of the full model to build the reduced model. To avoid this extraction, nonintrusive approaches like the Data Driven (DD) methods enable to approximate the reduced model without the access to the full matrix system. In this article, the DD-POD method is applied to build a low dimensional system to solve a magnetostatic problem coupled with electric circuit equations.
Fichier principal
Vignette du fichier
L2EP_TMAG_2017_CLENET.pdf (891.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01691190 , version 1 (23-01-2018)

Identifiants

Citer

Antoine Pierquin, Thomas Henneron, Stephane Clenet. Data-Driven Model Order Reduction for Magnetostatic Problem Coupled with Circuit Equations. IEEE Transactions on Magnetics, 2017, 54 (3), pp.1-4. ⟨10.1109/TMAG.2017.2771358⟩. ⟨hal-01691190⟩
183 Consultations
176 Téléchargements

Altmetric

Partager

More