Automatic classification of volcano seismic signatures - Archive ouverte HAL
Article Dans Une Revue Journal of Geophysical Research Année : 2018

Automatic classification of volcano seismic signatures

Résumé

The prediction of volcanic eruptions and the evaluation of associated risks remain a timely and unresolved issue. This paper presents a method to automatically classify seismic events linked to volcanic activity. As increased seismic activity is an indicator of volcanic unrest, automatic classification of volcano seismic events is of major interest for volcano monitoring. The proposed architecture is based on supervised classification, whereby a prediction model is built from an extensive data set of labeled observations. Relevant events should then be detected. Three steps are involved in the building of the prediction model: (i) signals preprocessing, (ii) representation of the signals in the feature space, and (iii) use of an automatic classifier to train the model. Our main contribution lies in the feature space where the seismic observations are represented by 102 features gathered from both acoustic and seismic fields. Ideally, observations are separable in the feature space, depending on their class. The architecture is tested on 109,609 seismic events that were recorded between June 2006 and September 2011 at Ubinas Volcano, Peru. Six main classes of signals are considered: long-period events, volcanic tremors, volcano tectonic events, explosions, hybrid events, and tornillos. Our model reaches 93.5% ± 0.50% accuracy, thereby validating the presented architecture and the features used. Furthermore, we illustrate the limited influence of the learning algorithm used (i.e., random forest and support vector machines) by showing that the results remain accurate regardless of the algorithm selected for the training stage. The model is then used to analyze 6 years of data.
Fichier principal
Vignette du fichier
2018_JGR_MALFANTE.pdf (2.26 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01949302 , version 1 (21-12-2018)

Identifiants

Citer

Marielle Malfante, Mauro Dalla Mura, Jerome I. Mars, Jean-Philippe Métaxian, Orlando Macedo, et al.. Automatic classification of volcano seismic signatures. Journal of Geophysical Research, 2018, 123 (12), pp.10,645-10,658. ⟨10.1029/2018jb015470⟩. ⟨hal-01949302⟩
179 Consultations
421 Téléchargements

Altmetric

Partager

More