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Abstract The prediction of volcanic eruptions and the evaluation of associated risks remain a timely and
unresolved issue. This paper presents a method to automatically classify seismic events linked to volcanic
activity. As increased seismic activity is an indicator of volcanic unrest, automatic classification of volcano
seismic events is of major interest for volcano monitoring. The proposed architecture is based on supervised
classification, whereby a prediction model is built from an extensive data set of labeled observations.
Relevant events should then be detected. Three steps are involved in the building of the prediction model:
(i) signals preprocessing, (ii) representation of the signals in the feature space, and (iii) use of an automatic
classifier to train the model. Our main contribution lies in the feature space where the seismic observations
are represented by 102 features gathered from both acoustic and seismic fields. Ideally, observations are
separable in the feature space, depending on their class. The architecture is tested on 109,609 seismic
events that were recorded between June 2006 and September 2011 at Ubinas Volcano, Peru. Six main
classes of signals are considered: long-period events, volcanic tremors, volcano tectonic events, explosions,
hybrid events, and tornillos. Our model reaches 93.5% + 0.50% accuracy, thereby validating the presented
architecture and the features used. Furthermore, we illustrate the limited influence of the learning algorithm
used (i.e., random forest and support vector machines) by showing that the results remain accurate
regardless of the algorithm selected for the training stage. The model is then used to analyze 6 years of data.

1. Introduction

1.1. Volcano Monitoring

Monitoring volcanoes and forecasting their related hazards has been a concern and a challenge for the sci-
entific community for many years. With the potential for dramatic consequences on populations and the
economy, volcanic hazards are among the most threatening, and thus, the interest in reliable forecasting and
prevention tools is obvious. A common approach for volcano monitoring relies on tracking the evolution of
several parameters, including seismicity, deformation, and gas flux and gas composition (McNutt, 1996). Usu-
ally, the tracking of these parameters and of their evolution is still essentially carried out manually. Over the
last decade, the technical evolution of geophysical instruments and their cost reduction have led volcano
observatories to install an increasing number of sensors. The ever increasing amounts of recorded data that
have to be processed makes manual approaches inappropriate for carrying out comprehensive analyses. This
represents another example of the big data phenomenon. As in various domains, machine learning methods
are today considered to automate analyses and to help to improve decision making, which can lead to health
and safety recommendations.

In this study, we propose a novel approach to automatically classify volcano seismic events that is based on
machine learning. The success of these methods relies on signal characterization with a large set (102) of
descriptors.

1.2. Machine Learning

We give here a short introduction to supervised machine learning that is aimed at defining the terminology
and the framework of the proposed technique. Machine learning is a field of artificial intelligence that is aimed
at automatically assigning objects (from a potentially large set) to categories that are associated to semantic
information. This automatic decision process relies on a prediction model that is learned on a set of examples
where the categories (or classes) are known beforehand. More specifically, the analysis is carried out on a data
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set of observations. In this study, we refer to observations as the recorded seismic signal that corresponds to
a volcano seismic event (e.g., an explosion or a tremor). However, in the literature and in many studies related
to machine learning, observations can also be referred to as signatures, samples, examples, data, or simply as
signals. The data set is said to be labeled if each observation has previously been categorized and associated to
a semantic class, that is, to one of the classes of interest (in the present study, classes correspond to the type of
volcanic event that is associated to the observation). Supervised machine learning algorithms provide mod-
els that can learn to predict the class of a new observation, where the label is not known. Many supervised
machine learning algorithms are being used today. We will introduce here two of the most effective ones (ran-
dom forest and support vector machines-SVMs), which were used to automatically classify volcano seismic
observations in this study. Machine learning algorithms are today very effective and are widely used in image
processing, speech processing, medical imaging, finance, and robotics, among others (Friedman et al., 2001).

As in many signal processing applications, a key point in machine learning processes is the representations
used for the observations. Traditionally, these are represented by features that relate to measurements made
on the observations that summarize and characterize their properties. In particular, properties that discrimi-
nate observations into their respective classes should be highlighted in the feature space. In machine learning,
the use of a feature space with respect to the original recording space is also motivated by the curse of dimen-
sionality (Bellman, 1956). More specifically, the number of observations, N, needed to train a model increases
with the dimension, d, of the input space, thereby representing the data in a space of low dimension.

Various methods can be used to pass from the original space of representation to a feature space, which
include learning features or designed features, which we will briefly explain (Friedman et al., 2001). However,
using one or the other method of defining features gives no guarantee of finding the optimum space of rep-
resentation for the data. Finding an appropriate feature space is always the key point when using machine
learning algorithms, for it greatly impacts on the output performance and strongly modifies the results. Learn-
ing representations are often referred to as dictionary learning, and they include algorithms such as principal
component analysis, independent component analysis, singular values decomposition, nonnegative matrix
factorization, and convolutional neural networks. Their main idea is to learn a dictionary of elements that can
be used to reconstruct the data. The main advantage of these algorithms is the final representation that is
adapted to best discriminate the observations into their classes. However, such algorithms often require a
large and labeled data set to learn the representation, and they can be very costly. Furthermore, a learning
representation cannot be related to a physical meaning and cannot be generalized to other data.

In the present study, as in many studies that have dealt with natural or environmental data, we use designed
features. In particular, we introduce D = 102 descriptors to extract features that represent and quantify the
physical values of the observations. The main challenge of this method is the difficulty of finding features
that effectively separate the observations into their classes. This step requires deep knowledge of the data
and, especially, why a given observation belongs to a specific class. One advantage of these feature sets is
that they can be generalized: They can be designed for one application, but they can be relevant to other
fields. Moreover, this technique is less constraining on computation time and allows the observation to be
represented by physical quantities that can be associated to a physical meaning of the phenomenon. In signal
processing, classical features would be mean values or standard deviation, for example. Yet another option to
extract features would be to apply dictionary learning over designed features, which would lead to an even
more compressed representation of the signals, although once again, this loses the physical meaning of the
features.

We will now briefly introduce the two learning algorithms that will be used throughout the present study. The
random forest algorithm (Breiman, 2001) is built upon an ensemble of binary decision trees (Quinlan, 1986),
which are combined by majority voting. A binary decision tree is a discriminative algorithm that carries out
iterative tests on features in a hierarchical manner, until a classification rule is defined. Potentially, the main
advantage of the algorithm lies in its simplicity and its explanatory power. However, binary decision trees
tend to overfit (i.e., adapt too closely) the examples from the learning phase, and thereby the learned decision
rules might not be general enough to correctly discriminate newly recorded observations. Random forest
was proposed to overcome this limitation by using bagging: An ensemble of many binary trees is considered,
with each trained on a random subset of the original data set (e.g., typically, a random 10% of the data set
is left for each tree). Furthermore, each node of a tree takes decisions on a random subset of the features
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used to represent the observations (e.g., typically, \/E features are considered, where d is the feature vector
dimension). This second approach aims to further decrease the correlation among the binary trees.

The second machine learning approach we use, SVM algorithms were presented by Cortes and Vapnik (1995).
The main idea is to build a linear hyperplane in the feature space that maximizes the margin (i.e., the distance
between the hyperplane and the closest data). This simple linear classifier works well on data that are linearly
separable in the feature space, which is rarely the case in real-case scenarios. Two variants have been pro-
posed to improve the algorithm performances. The first one uses a kernel function to project the data from
the original to another feature space of higher dimension, in which the data would be linearly separable. This
is known as the kernel trick (Friedman et al., 2001). Several kernel functions have been shown to be effective.
In the case where a radial basis function is used as the kernel, the final feature space has an infinite dimen-
sion, and the data are therefore necessarily linearly separable. The second variant to the original algorithm is
to use a soft margin, that is, to introduce a cost parameter, Cg),, that allows some training observations to be
on the wrong side of the margin. Using a soft margin prevents overfitting, thus provides a model that has bet-
ter generalization potential. In this study, we use a SYM implementing both improvements over the original
algorithm.

1.3. Related Studies

In this section, we review the studies that are related to the present study, in terms of the automatic classifica-
tion of volcano seismic signals and also the choice of signal representations for machine learning purposes. We
especially review several fields, including acoustic data classification. Indeed, automatic analysis of acoustic
data is today much more advanced than tools currently used for analysis of seismic data. The interest in such
adjusting tools that were developed for other purposes is strong, especially given the similarities between the
data involved (i.e,, the transient nature of the signals). In the following, we focus our attention on the features
that vary significantly from one application to another. The learning algorithm has less impact on the results,
and for most studies this was chosen as random forest (Hibert et al., 2017; Maggi et al., 2017), SVMs (Apolloni
etal., 2009), neural networks (Apolloni et al., 2009; Langer et al., 2006), or hidden Markov models (Benitez et al.,
2007; Cortés et al., 2009; Gutiérrez et al., 2009; Hammer et al., 2012; Ibafez et al., 2009; Ohrnberger, 2003).

Automatic classification systems for volcano seismic waves are not yet widespread, although several studies
on this subject have started to appear. In particular, Hibert et al. (2017), Langet (2014), and Maggi et al. (2017)
classified seismic observations represented by features that included duration, skewness, kurtosis, statistics
ratios, and centroids. The study of Maggi et al. (2017) had a similar approach to our architecture, where
the main difference is that they obtained their best results when using several seismic stations simultane-
ously, while in the present study, we obtain the same results from a single station. The approach and testing
methods are, however, very similar. The approach presented in Hibert et al. (2017) is also similar but on a
binary classification problem. Other studies propose alternative features, such as used by Langer et al. (2006),
where features based on energetic criteria were considered, such as the signal energy in various frequency
bands. Cannata et al. (2011) used three features: peak frequency, quality factor, and amplitude. Apolloni et al.
(2009) used linear predictive coding as a normalized difference between maximum and minimum amplitudes.
Esposito et al. (2008) propose to use unsupervised method but on the observation of waveforms directly.
Hibert et al. (2014) propose to use five features, including the signal duration, duration of increasing and
decreasing phases, kurtosis of the envelope, and signal maximum over mean ratio. Those features are used
to discriminate rockfall from all other signals. Benitez et al. (2007), Cortés et al. (2009), Gutiérrez et al. (2009),
and Ibanez et al. (2009) use modified mel frequency cepstral coefficients, which were originally designed for
speech processing and measure the signals energetic repartition in frequency bands. Physical features, such
as polarization and spectral attributes, can also be used (Hammer et al., 2012; Ohrnberger, 2003).

Acoustic signals of various origin can be targeted for automatic classification, including environmental
sounds, music, or speech. For automatic classification of environmental sounds (i.e., from nature and animals,
or human induced), we can mention Tucker and Brown (2005), who classified transient sonar sounds. More
than 20 features were gathered to describe the signals, including duration, peak power, average power, time
of peak power, mean skewness, mean kurtosis, power standard deviation, rate of attack, and rate of decay.
Similar features were used by Zaugg et al. (2010) to distinguish boat sounds from whale sounds. Fagerlund
(2007) also gathered signal descriptors to identify bird species from their calls, which included spectral cen-
troid, bandwidth, and spectral flatness and duration. Spectral centroid, bandwidth, and threshold crossing
rates were also considered by Huang et al. (2009) for a frog sound identification system. For the same purpose,
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Figure 1. Map of Ubinas Volcano with the locations of the permanent IGP
seismic network indicated (white triangles). The data used in this study were
recorded at UBIW station. Inset, top left: location of Ubinas Volcano (black

triangle) within Peru.

296

Han et al. (2011) also used Shannon and Rényi entropies. Similar fea-
tures have been used for music processing; see, for example, Fujinaga and
MacMillan (2000), Eronen and Klapuri (2000), and Esmaili et al. (2004).

For the present study, our main contribution lies in the definition of the
feature space in which the signals are defined. Namely, we propose the use
of 102 features to obtain a comprehensive description of the observations.
This paper is organized as follows: Section 2 presents the volcano seismic
data set used in this study, which was recorded at Ubinas Volcano (Peru).
We present the automatic classification architecture in section 3, and in
particular, the feature set is described in section 3. The results are then pre-
sented and discussed in section 4. Finally, the prospects and conclusions
surrounding this study are summarized in section 5.

2. Experimental Material

2.1. Seismic Monitoring of Ubinas Volcano

Ubinas Volcano is an andesitic stratovolcano in southern Peru, (16° 22'S,
70° 54'W; altitude, 5,672 m). It is considered to be the most active vol-
cano in Peru, and it is closely monitored by the Instituto Geofisico del Peru
(IGP). After nearly 40 years of quiescence, Ubinas Volcano erupted in 2006.
Three eruptions have occurred since 2006, from 2006 to 2011, from 2013 to
2014, and in 2016. Ubinas Volcano has been monitored seismically by the
IGP since 2006 (Macedo et al., 2009), with the cooperation of the VOLUME
project (funded by the European Commission 6th Framework Program)
and the Institut de Recherche pour le Developpement (France). The first per-
manent telemetered station (i.e,, UBIW) was equipped with a short-period vertical 1-Hz sensor that was
installed in May 2006 on the northwest flank of Ubinas Volcano (Macedo et al., 2009). Three additional sta-
tions were added in 2007 (i.e, UBIN, UBIE, and UBIS). UBIN was equipped with a broadband vertical sensor,
and the other stations had short-period sensors. In addition, UBIN and UBIS were equipped with biaxial tilt-
meters with 0.1-prad resolution (Inza et al., 2014). These four stations have been working permanently since
2007 (Figure 1). The data are recorded continuously with a sampling rate of 100 Hz, and they are then trans-
mitted in real time to Cayma Volcanological Observatory in Arequipa (Peru). In this paper, our analysis is based
on seismic data from the vertical component of UBIW station.

298 300 302
LONGITUDE (UTM KM)

2.2, Seismic Signatures Overview

The data used for the present study came from a catalog of N = 109, 609 seismic observations of volcanic
events that were recorded between May 2006 and October 2011. Each observation was manually identified
and extracted by the IGP in Arequipa Observatory. Six very heterogeneous classes of signals were defined by
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Figure 2. Waveform and spectrogram (Gaussian window of 512 samples width) of volcano seismic signals recorded at

Ubinas Volcano. Six observations are shown, as examples of long-period (LP) events, tremors (TRs), explosions (EXPs),

volcano-tectonic (VT) events, hybrid (HYB) events, and Tornillos (TORs). The amplitude is linear and has been

normalized.
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Figure 3. Number of events per day for the six different types of volcano seismic signals recorded at Ubinas Volcano.
The date is indicated in cumulated days starting from 1 January 2006.

the IGP after 10 years of observations of Ubinas Volcano. Each class is associated to a physical state or activity
of the volcano. These types of signals are observed for other volcanoes, and have been described for many
years in the literature, in particular, by (Chouet, 1996; Lahr et al., 1994; Neuberg et al., 2000). They are listed in
the following:

1. Long-period (L.P) events (95,243 observations): These originate from fluid processes. They are interpreted
as a time-localized pressure excitation mechanism, followed by the response of a fluid-filled resonator
(Chouet & Matoza, 2013). Different models have been developed to explain the resonance observed for
LP events,including in particular the fluid-filled crack model (Chouet, 1986) and the fluid-filled conduit
model (Neuberg et al., 2000). A wide variety of volcanic processes can produce the excitation mecha-
nism that triggers crack or conduit resonance, as particularly for lava dome growth for andesitic volcanoes
(Chouet & Matoza, 2013; Morgan et al., 2008; Neuberg et al., 2000).

2. Tremors (TRs; 12,309 observations): These are defined by a sustained amplitude that can last from tens
of seconds to days, and they occur over a frequency range from 1 to 9 Hz (McNutt, 1992). This author
reported that many characteristics of LP events, and in some cases also of explosion quakes (see below),
are commonly associated with TRs. Virtually all eruptions are accompanied by TRs (McNutt, 1992). Visual
observations at Ubinas Volcano suggest that TRs are associated with magma extrusion and sporadic or
continuous gas and ash emissions (Macedo et al., 2009).

3. Explosions (EXPs; 159 observations): These are associated to sudden magma extrusion, and ash and gas
emission. Physically, they are related to fragmentation processes in the conduit, as has been observed for
many andesitic volcanoes (Druitt et al., 2002; Iguchi et al., 2008; Ohminato, 2006). Inza et al. (2011) noted
that for Ubinas Volcano, EXPs are related to destruction of the magmatic plug. Traversa et al. (2011) showed
that there is an overall acceleration of the LP events rate above the background level over the 2 to 3 hr
before vulcanian EXPs for Ubinas Volcano. This occurrence of a large number of LP events before EXPs is
consistent with the dome growth process.
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Figure 4. lllustration of the architecture used to build a model (light green), and the cross-validation process used to
estimate its performance (dark green). Steps 1, 2, and 3 are used to train a model from a labeled data set of
observations, [O(t)]. The observation O(t); is the j-est observation of class c;, with 1 <i< C,1 <j <N, and N, as the
number of observations considered for class c;. Fj’ is its corresponding feature vector. A fraction « with 0 < & < 1 of the
data set is used for learning, and the remaining data are used for testing. The process is repeated 50 times, with random
trials of learning and testing observations. Step 1 : preprocessing, Step 2 : features extraction, Step 3 : learning, and
Step 4 : testing (or using) the model. SVM = support vector machine; RF = random forest.

4. Volcano-tectonic (VT) events (1,315 observations): These are brittle-failure events. They are associated to
stress changes that are induced by magma movement (Chouet & Matoza, 2013). There are relatively few
VT events at Ubinas Volcano, compared to LP events, but their number increased from 2006 to 2011. VT
events are more numerous at the end of an eruption period.

5. Hybrid (HYB) events (474 observations): These have characteristics of both VT and LP events, with high fre-
quency of onset followed by low frequencies. HYB events were introduced by Lahr et al. (1994) to describe
events observed at Redoubt Volcano. They have also been observed for Soufriere Hills Volcano, Montserrat
Volcano (White et al., 1998), and Mount St. Helens Volcano (Harrington & Brodsky, 2007), where they are
related to dome growth.

6. Tornillos (TORs; also known as screw events; 109 observations): These have a very limited distribution of
frequencies and a very slowly decaying coda. They are related to resonating fluid-filled conduits or cavi-
ties. TORs can be considered as a specific type of LP event with a long-duration coda that is composed
of harmonic oscillations. They were observed at Galeras Volcano before several eruptions in 1992 and
1993 (Narvaez et al., 1997). TORs are rare for Ubinas Volcano, but they appear to be more common at the
beginning and end of eruptive periods.

See Figure 2 for an example of the waveforms and spectrograms associated to each of these classes. The
number of events of different types per day throughout the time period of the study is showed in Figure 3.

There is no class of rockfalls in our list. Generally speaking, rockfalls do not constitute a significant activity at
Ubinas, perhaps because this part of the Andes is very dry. During the period 2006-2011, Ubinas was in erup-
tion with episodes of dome growth, explosions, and very regular ash emission generating seismic events of
higher amplitude compare to any kind of rockfalls. It is probable that if rockfalls have occurred, the generated
signals were masked by the magmatic activity or not selected due to low amplitudes compared to eruptive
signals.

3. Methods

We here detail the classification architecture proposed. From a large data set of observations of volcano seis-
mic events, a machine learning algorithm is used to train a model to classify new events into one of the
six classes considered (Figure 2). The system architecture is described in Figure 4. The data considered for
the input were a labeled data set, as described in section 2.2. C = 6 different classes of observations are
considered. For each class ¢; (with 1 < i < C), N; observations were labeled and are taken into account. All of
the observations do not necessarily have the same length. We detail Steps 1 and 2 below that transform the
labeled data set of observations into a labeled data set of feature vectors. Step 3 describes the learning pro-
cess where the prediction model is actually built. Finally, a fourth step of testing can be included to estimate
the model performances, as is explained in section 4.
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Step 1: Preprocessing. A first step of signal preprocessing is needed to standardize the observations. Typically,

observations that were recorded from the same station but with different sensors need to be harmonized
(e.g., due to change of sensor following technical failure). In particular, a filtering above 1 Hz is performed.
Theinstrumental response was not removed from the original signals. Preprocessing also includes the auto-
matic or manual detection of relevant seismic observations of volcanic events that will constitute the data
set. Observations considered in this catalog were detected either manually by the observatory or automati-
cally using the short-term average/long-term average method. Each observation is also normalized in terms
of its energy. The signal energy is computed and normalized to 1. This is done to build a model that is avail-
able for all observations, regardless of their amplitude level. It is worth noting that most state-of-the-art
methods are based on the energy levels (Langer et al., 2006) and therefore cannot be used to detect obser-
vations of low energy. Finally, a data set of N = 109,609 observations was considered. We also fixed the
maximum of 5 min per observation, in order to build a model that could permit near real-time analysis.

Step 2: Feature extraction. As specified in sections 1.2 and 1.3, a model sees the data exclusively in the fea-

ture space; that is, observations are only considered through their associated feature vectors. The choice of
features used to represent an observation is therefore one of the major and crucial issues when designing
a classification architecture. In the present study, we reviewed, gathered, and selected D = 102 features
that have been used in many classification tasks from various domains (see section 1.3). The use of a large
number of features helps to represent the observations in as thorough a way as possible, to be able to
describe their separating properties. We organized these features into three categories, namely, statistical,
entropy-based, and shape descriptors. The definitions of these features are given in Table 1.

1. Statistical features are valued for their immediate interpretation in terms of the signal shapes. We
used means and standard deviations and also higher moments, such as skewness and kurtosis,
which measure the asymmetry and flatness of the signal, respectively, compared to the Gaussian
distribution.

2. Entropy features come from information theory, and these are used to measure the information
content of a signal. We used Shannon entropy and Rényi measurements (Esmaili et al., 2004;
Huang et al., 2009).

3. Shape descriptors can be used, for instance, maximum over average values. These help to describe the
shape of a signal and therefore its physical properties. Rates of initiation and decay are particularly
useful for this purpose.

Furthermore, we propose to extract these features from three different representations of the observations.
Specifically, all of the features were extracted from three representations:

1. Time domain. Features extracted from the observation x[t] are used to describe the waveform shape
and its specificities (Time).

2. Frequency domain. A Fourier transform (F {-}) of the discrete temporal signal x[t] leads to X[f] =
F {x[t]}, which represents the spectral content of the observation (Frequency).

3. "Cepstral" domain. This domain is commonly used in speech processing to describe harmonic prop-
erties of the signal, that is, the periodic properties of the spectrum. The features are then extracted
from -[q] = - {|X[f]|} (Cepstral).

Eventually, each observation is represented by 34 features (i.e., 9 statistical, 9 entropy, and 16 shape descriptor

features) that are extracted in three different domains, which leads to a feature vector of dimension D =

34 x 3 = 102. The original data dimension is thereby reduced while maintaining the information content of

the signals (as a comparison, an original 30-s-long observation has a dimension of 3,000). Using general signal

shape descriptors leads to a precise description of the signal properties. Extraction of these descriptors from

the three different domains (i.e., temporal, spectral, and cepstral) underlines different properties of the original

signal and eventually leads to a thorough description of each observation. Of note, the feature extraction
process used for these data can also be applied to other transient signals.

The labeled data set of feature vectors is then considered for the next step.

Step 3: Learning. This final step can be referred to as the model learning or training. Here a prediction model is

built from a learning algorithm and a data set of labeled feature vectors. Several learning algorithms can be
used for this task (leading, in many cases, to similar results). The choice of the optimal learning algorithm
for a given application is empirical. However, if the feature space has been correctly chosen, the learning
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Table 1
List of Features
Statistic features
Feature Definition Used in Ref.
Length n = length(s) Tucker and Brown (2005) 1
Mean Us = % >islil Tucker and Brown (2005) 2
Standard deviation o, = (n11) >i(slil — pg)? 3
5 3

Skewness 1y, ( SUJG_”‘ ) Langet (2014) and Hibert et al. (2014) 4

s

; 4

Kurtosis % > ( SUJ{;"‘ ) Langet (2014) and Hibert et al. (2014) 5

s
i of central energy f= % - Eii (Tucker & Brown, 2005) 6
RMS bandwidth B =4/ lE >ii2-E -1 Tucker and Brown (2005) 7

3, (i—-13E;
Mean skewness ’E_B3 Tucker and Brown (2005) 8
. 3, (i—D*E;
Mean kurtosis ’E_B4 Tucker and Brown (2005) 9
Entropy features (with p(s;) the probability of amplitude level s))
Feature Definition Ref.
Shannon entropy? ~ X p(splog, (pGs)) Esmaili et al. (2004) and Han et al. (2011)  10to 12
J

Rényi entropy® 11: -log, <Z p(sj)"’> Han et al. (2011) 13t0 18

J
Shape descriptor features
Feature Definition Ref.
Rate of attack max; (w ) Tucker and Brown (2005) 19
Rate of decay min; ( w ) Tucker and Brown (2005) 20
Ratios min/mean and max/mean Langet (2014) and Hibert et al. (2014) 21to 22
Energy descriptors Signal energy, maximum, average, standard deviation, skewness, and kurtosis Tucker and Brown (2005) 23to0 28
Specific values min, max, i of min, i of max, threshold crossing rate, and silence ratio Tucker and Brown (2005) 29to 34

Note. Features computed for a signal s[i]?:1 (in which i might correspond to a temporal, frequency, or cepstral sample). E = Zf=1 s[i]? and E; = s[i]?> describe
the signal energy and the energy at sample i, respectively. Some features have a dimension greater than others; e.g., entropy measurements are made on three
different estimations of the amplitude probability (i.e., different histogram bin numbers).

aBin numbers for probability estimation: 5, 30, and 500. PBin numbers for probability estimation: 5, 30, 500, « = 2, and inf.

algorithm choice should not have a major influence on the results. In this study, we chose to use random
forest and SVMs, as both of these are state-of-the-art techniques in machine learning.

Step 4: Testing. An extra step of testing can also be considered to evaluate the performance of a model and
thus to validate the classification architecture and, in particular, the feature choice. In this study, we used
cross validation, the concept behind which is illustrated in Figure 4 and is explained, in section 4.1.

4. Results and Their Analysis

The code used for this study is based on the Automatic Analysis Architecture that we developed and is avail-
able at Malfante (2018). It uses Python 3, and all tests were conducted on a MacBook Pro laptop. All results
are measured in term of accuracy and precision. Accuracy describes the good classification rate within a class
(see equation (1)), and precision describes the rate of observations belonging the the predicted class among
all the prediction of the class (see equation (2)).

#(Observations of ¢; predicted as ¢;)
Accuracy ¢; = - (M
#(Observations of ¢;)

#(Observations of ¢; predicted as c;)

Precision ¢; =
! #(Observations predicted as ¢;)
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Table 2
Classification of the General Results
Features Most valuable features Valuable features Time Frequency Cepstral
Dimension 3 13 34 34 34
SVM 92.1 + 0.54% 84.4 + 0.50% 86.9 + 0.60% 83.9 + 0.89% 93.5 + 0.50% 78.4 +1.0%
RF 92.5 + 0.45% 84.2 + 0.75% 90.3 + 0.52% 87.2+0.57% 91.3 + 0.45% 79.3 +0.76%

Note. Comparisons of the accuracies of the results using random forest versus support vector machine, for the different feature sets.

4.1. First Test: Method Validation

To validate the proposed classification scheme, we perform cross-validation analysis on the first year of the
data set. To consider relatively balanced classes, we gather 1 year of observations for classes that are highly
frequent (i.e., LP events, TRs, and VT events), and all of the observations available for the less frequent classes
(i.e., HYB events, EXPs, and TORs). For each class, a fraction a of the observations is used to train the model.
Because all the learning data need to be loaded in the computer memory at the same time, the number of
training observation per class is also limited to N,,,, = 800 for computational reasons. The remaining data are
used for the test stage. Formally, if 0 < @ < 1 stands for the learning rate, N; for the number of observations
considered for the class ¢; with 1 <i < C and C the number of classes, then min(N; - @, N,,,,,) observations are
therefore considered for each class for the training step. The remaining max (N; - (1 — @), N; = N, ) observa-
tions per class are used to test the model that is produced. The random selection of learning and testing data
among all the available observations is repeated 50 times to consider statistically valid results. In the follow-
ing, the results are expressed as means and standard deviation over the 50 trials. The cross-validation results
for the comparison of the two learning algorithms (i.e., random forest and SVMs) and the four feature sets (i.e.,
Time, Frequency, Cepstral,and A11 together) are given in Table 2.

Using the A11 features, the accuracy of the results reaches 92.5% + 0.54% (i.e., a good classification rate),
thereby showing the effectiveness of the proposed architecture and the feature choice. The results also
validate the limited influence of the learning algorithm (i.e., random forest vs. SVMs), which was expected
(92.5% + 0.45% vs. 92.1% =+ 0.54%, respectively, when considering 211 features). The influence of the features
used for the automatic classification, however, is much more important. These results vary from 78.4% + 1.0%
when using cepstral features and to 93.5% + 0.50% when using frequency features. It is particularly
interesting to note that for these data and this application, the frequency features appear to be particularly
discriminative and, in particular, that manual classification is often based on the frequency content of the
observations.

The confusion matrix is given in Table 3, and it provides more details about the class-by-class results. For
instance, the best classified class is for the LP events, with 58,363 correctly classified observations compared
to 62,030 considered (94.1%), followed closely by the VT events, with an accuracy of 92.2%. The confusion
matrix can also be used to analyze the model limitations. Most of the prediction errors are divided up between:
(i) LP events mixed with TRs, (ii) HYB events mixed with VT and LP events, and (iii) EXPs mixed with HYB

Table 3
Confusion Matrix

True Class (ground truth)

LP TR vT EXP HYB TOR Precision
LP 58,363 627 8 0 5 1 98.9%
TR 3,000 4,584 0 1 2 0 60.4%
Predicted VT 478 11 475 5 1 3 48.3%
Class EXP 15 16 2 29 0 0 47.8%
HYB 131 3 28 13 125 0 41.7%
TOR 43 4 3 0 0 28 35.9%
Accuracy 94.1% 87.4% 92.2% 59.8% 87.1% 84.6%

Note. Learning rate a = 70%; the model was trained using support vector machine (RBF kernel, Cggr = 10, y =
0.01) and feature set Frequency, with cross validation with 50 trials. Overall accuracy: 93.5%. Bold values mean
number of good classifications.
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Figure 5. Importance and selection of features. Bottom subplot: Feature weights (mean weights on 1-year
cross-validation models, trained with random forest on A11 features; 100 trees; « = 0.7). Middle subplot: mean
accuracies (models trained with random forest; 100 trees; on the d-st most important features with 1 <d <D, D = 102).
Top subplot: mean accuracies for each class ¢;, 1 <i < C. The three most valuable features (MVF; filled squares)
and the 13 valuable features (VF; filled and empty squares) are indicated. Features are referenced with T, F, or C
depending on their computation domain (time, frequency, and ceptral, respectively), and their reference
numbers are as given in Table 1.

events. Those mistakes are seen through the precision rates, which are related the the false detection rates,
and are low for some classes. Physical interpretation of these results is valuable, as all of the errors made
by the model translate into physical similarities between the signals. For example, to parallel the main three
prediction errors above: (i) LP events and TRs are in the same frequency range and can overlap, and typically,
a LP event can be found within a TR. This will confuse the model, which predicts a single class at a given
time. Macedo et al. (2009) also showed that on some occasions, LP events occur in a repeated way and can
be separated at the beginning by some tens of seconds, before merging into a TR (e.g., before an EXP). (ii)
HYB events have characteristics of both LP and VT events, and they can belong to one class or the other.
Finally, (iii) EXPs and HYB events have similar frequency contents, and EXPs can produce both low and high
frequencies. The analysis of this error is thus particularly valuable, as these results can help volcanologists to
better analyze the seismicity, the relations between classes of events, and their evolution with time. The ability
of these methods to process very large data sets of recordings is essential for volcanic observatories.

4.2, Second Test: Features Selection

As previously shown and explained, the feature choice is decisive to obtain good results. We here investigate
the possibility to reduce the feature dimension through the selection of the relevant features from among the
whole feature set proposed here. Considering that all of the proposed features might not be optimal, the
feature vectors dimension should be kept as low as possible to avoid accuracy losses due to the curse of
dimensionality (see section 1.2). In particular, features that are strongly correlated can be left out. We inten-
tionally did not use compression algorithms (e.g., principal component analysis), so as to maintain the physical
meanings of the features. Various approaches can be used to select d important features among a feature
set of dimension D, which include forward selection or backward elimination (Langley et al., 1994). However,
the exhaustive search for the d-st optimal features in terms of gain in accuracy is not feasible practically. As a
first approach here, we use a forward selection method, which ranks the features according to their weights
given in a random forest trained model. More specifically, random forest can rank features depending on their
impurity scores, whereby a feature that leads to a high decrease in impurity in the trees will have a high rank-
ing. Nevertheless, the features that are not selected using this method are not necessarily meaningless. If two
features are strongly correlated, then only one will have a high score. Thus, while the random forest ranking
tool is a good approach for features selection, the nonselected features should not be considered as unnec-
essary when interpreting the data. For more details on this subject, the reader is referred to Quinlan (1986)
and Breiman (2001). Figure 5 shows the features ranked by importance using the impurity measurement and
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Figure 6. Monthly accuracy evolution for the LP events, with the model trained on the first 800 observations of each
class (all recorded in May 2006 for the LP events). LP = long-period.

shows the accuracy of the results when the observations are represented by feature vectors of dimension d
with 1 < d < D, composed of the d most important features.

From Figure 5, we can extract the two subsets of the most important features, as the three most valu-
able features (Figure 5, MVF, filled squares) and the 13 valuable features (Figure 5, VF, filled and
empty squares, which include the most valuable features). These features were selected as subsets,
which led to a notable gain in accuracy with a reasonably small dimension. With just the most valuable
features, the accuracy reaches 84.4% +0.50%. This result is interesting, as it shows that good classification
can be obtained with a very restrictive number of features. In particular, this is of importance for real-time
or embedded systems and applications. Indeed, the most valuable features contain the three most
important features (3% of the total features), which are (i) F4: the spectrum skewness, which measures the
spectrum asymmetry; (ii) F5: the spectrum kurtosis, which measures the spectrum peakness; and (iii) T7: the
RMS bandwidth in time, which measures the mean length of the signal around which the energy is accu-
mulated. The physical analysis of these features is, as such, a good indicator of the signals for the experts. In
particular, while the features rank based on random forest can be used to select such relevant features, these
features are themselves interesting to analyze, as they gather and embody the information-discriminating
signals across the classes. Similarly, the 13 most important features were extracted (13% of the features) for
the feature set of the valuable features (whichincludesthemost wvaluable features).Thisfea-
ture set is particularly interesting as it provides a performance that is close to that of the whole feature set,
at 90.3% when using random forest. It is also interesting to note that the valuable features are fea-
tures from the three computation domains, as time, frequency, and cepstral, thereby confirming the interest
in considering these three different domains for signal representation.

4.3. Third Test: Analysis Over 6 Years of Recordings

In this section, we propose to build a model using the N, = 800 first observations of each class recorded
from May 2006 and to test it over the 6 years of recording. In particular, we focus our attention on the LP
events, as these were numerous throughout the recordings (95,243 observations over 6 years). The monthly
evolution of the classification results is shown in Figure 6. Specifically, the analysis reveals three different
phases that start in May 2006, May 2007, and December 2010, where the mean accuracies are very differ-
ent from one phase to the other. In particular, the accuracy collapses in May 2007, which reveals a significant
change in the signal shapes compared to the training observations (May 2006). This period also corresponds
to a sharp decrease in the number of LP events.

This was discussed with the Ubinas Volcano Observatory, in Arequipa. A manual revision of the seismic sig-
nals for the period of May-July 2007 was performed to determine whether the observatory analysis might
have confused LP events with other signals. Indeed, the classification criteria had been improved since the
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beginning of the creation of the catalog in 2006, through the experience acquired during the other eruptions
of Ubinas Volcano, as well as through the signal classification of Ticsani and Sabancaya Volcanoes. The criteria
used for the reclassification are those that are now used for all of the Peruvian volcanoes. This revision analysis
thus showed a difference between the two classification systems starting from 25 May 2007. Some of the Lp
events were indeed mislabeled, essentially as VT events or TRs, or to a lesser extent, as HYB events. Part of the
accuracy collapse observed from 25 May 2007 can thus be explained by this confusion between the classes.

At the same time, the new classification showed a similar decrease in the number of LP events, which would
instead suggest a change in activity, and therefore a change in the characteristics of these signals. Macedo
et al. (2009) observed strong temporal variations of the degassing and seismic activity in a period starting
in November 2006. A downward migration of magma in the crater has been observed on images taken in
December 2006, compared to previous images taken in April and October 2006 (Figure 5 in Macedo et al.,
2009). The receding of magma in the conduit has been observed over several months. Other images of
the crater taken by IGP Arequipa Observatory respectively on 17 April, 8 June, and 26 August 2007 show
a clear drop of the magma level between April and June 2007. The backward migration of magma in the
conduit implies modifications of seismic source positions and possibly mechanisms due to the complexity
of the geometry of the conduit and time modifications of the coupling between magma and the conduit
walls. Magma migration can also affect local stress conditions or conduit cavity properties. This can obviously
explain modifications of the characteristics of the LP events. The decrease of LP accuracy is starting in January
2007 and its strengthening between April and May 2007, which is coincident with observations of volcanic
activity. The interesting point is that these modifications were not detected by manual classification, while
the automatic classification perfectly identified them. This result is particularly important, as the use of auto-
matic methods of classification has revealed inconsistencies in the original manual classification. This thereby
validates the use of such methods to help with the monitoring task carried out by volcano observatories. The
automatic analysis revealed a modification of interpretation of the signals for the LP events, which was not
detected in the manual analysis.

5. Conclusion and Prospects

The present study is related to the classification of volcanic events based on an analysis of the seismic sig-
nals. Evaluation of the volcanic risk remains a timely and open issue, which triggers strong interest in the
international community for approaches to automatically process large databases of recordings. Automatic
classification tools for signals that might be either precursors or indicators of volcanic active phases are par-
ticularly needed. In this paper, we present our classification architecture that is based on supervised machine
learning. The main idea is to use a labeled data set of targeted signals to build a prediction model. This predic-
tion model can then be used to automatically analyze newly recorded signals. Our main contribution consists
of the gathering of the large number of features that are used to represent the data. We considered 102 fea-
tures that we tested on 109,609 seismic observations acquired for Ubinas Volcano, which is the most active
volcano in Peru. The features give a general and precise description of transient signals and can be used for
other applications. Our model reaches an accuracy of 93.5% +0.50% over the labeled set of data, thereby vali-
dating the effectiveness of the proposed classification scheme and the chosen features for signal description.
Furthermore, the analysis of the whole data set used for our method revealed a clear change in the LP event
observations linked with a significant evolution of the magmatic activity, which had not been identified by the
manual classification. The learned model actually led to a more precise analysis. Further analysis showed that
the accuracy of the results can be maintained when only a subset of the most important features is used, as
obtained through random forest features ranking. Comparisons of the two learning algorithms (i.e., random
forest and SVM) also confirmed the limited influence these have if the feature space has been well chosen.

The prospects for this study indicate the implementation of such tools in volcano observatories to be run in
real time, the development of a confidence index, and the inclusion of a detection stage to analyze continuous
recordings. More investigation on the feature set could also be conducted, typically features computed from
spectrogram representation of the events could be considered, and deep neural network could be used to
represent the data. Another perspective would be to use semisupervised or unsupervised learning algorithms
to relax the dependency on a labeled data set, which today limits the use of supervised models. The use of
machine learning models can also be used to process continuous signals instead of discrete events. This last
prospect is currently under investigation for future work.
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