Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2021

Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo

Résumé

In this paper we derive spectral gap estimates for several Piecewise Deterministic Markov Processes, namely the Randomized Hamiltonian Monte Carlo, the Zig-Zag process and the Bouncy Particle Sampler. The hypocoercivity technique we use, presented in (Dolbeault et al., 2015), produces estimates with explicit dependence on the parameters of the dynamics. Moreover the general framework we consider allows to compare quantitatively the bounds found for the different methods.
Fichier principal
Vignette du fichier
1808.08592.pdf (649.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01941467 , version 1 (16-01-2024)

Identifiants

Citer

Christophe Andrieu, Alain Durmus, Nikolas Nüsken, Julien Roussel. Hypocoercivity of Piecewise Deterministic Markov Process-Monte Carlo. The Annals of Applied Probability, 2021, ⟨10.1214/20-AAP1653⟩. ⟨hal-01941467⟩
237 Consultations
34 Téléchargements

Altmetric

Partager

More