Effects of Pansharpening Methods on Discrimination of Tropical Crop and Forest Using Very High-Resolution Satellite Imagery - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Effects of Pansharpening Methods on Discrimination of Tropical Crop and Forest Using Very High-Resolution Satellite Imagery

Mohamed Abadi
  • Fonction : Auteur
  • PersonId : 916252
Artur Gil
  • Fonction : Auteur

Résumé

This paper assesses the effect of pansharpening process in classification of tropical crop and forest areas. Supervised classifications based on Support Vector Machine were adopted. Different pansharpening methods using bilinear interpolation technique have been used to merge very high spatial resolution Quickbird multispectral and panchromatic imagery. To develop this study, seven sub-areas were extracted and human segmentations data were created. The quantitative results based on the mean of Probabilistic Rand Index, Variation of Information and Global Consistency Error, computed for all sub-areas, showed similar results by using (0.92, 0.87, 0.87, 1.23, 0,2 respectively) and by not applying (0.93, 0.89, 0.86, 1.23, 0.21 respectively) pansharpening methods.
Fichier principal
Vignette du fichier
2018 - IGARSS - Article.pdf (764.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01931765 , version 1 (23-11-2018)

Identifiants

Citer

Mohamed Abadi, Enguerran Grandchamp, Artur Gil. Effects of Pansharpening Methods on Discrimination of Tropical Crop and Forest Using Very High-Resolution Satellite Imagery. IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Jul 2018, Valencia, Spain. ⟨10.1109/IGARSS.2018.8518243⟩. ⟨hal-01931765⟩

Collections

UNIV-AG LAMIA
90 Consultations
109 Téléchargements

Altmetric

Partager

More