ActivMetaL: Algorithm Recommendation with Active Meta Learning - Archive ouverte HAL
Poster De Conférence Année : 2018

ActivMetaL: Algorithm Recommendation with Active Meta Learning

Lisheng Sun-Hosoya
  • Fonction : Auteur
  • PersonId : 1032946
Isabelle Guyon
  • Fonction : Auteur
  • PersonId : 1025260
Michèle Sebag
  • Fonction : Auteur
  • PersonId : 836537

Résumé

We present an active meta learning approach to model selection or algorithm recommendation. We adopt the point of view "collab-orative filtering" recommender systems in which the problem is brought back to a missing data problem: given a sparsely populated matrix of performances of algorithms on given tasks, predict missing performances; more particularly, predict which algorithm will perform best on a new dataset (empty row). In this work, we propose and study an active learning version of the recommender algorithm CofiRank algorithm and compare it with baseline methods. Our benchmark involves three real-world datasets (from StatLog, OpenML, and AutoML) and artificial data. Our results indicate that CofiRank rapidly finds well performing algorithms on new datasets at reasonable computational cost.
Fichier principal
Vignette du fichier
ACTIVMETAL.pdf (414.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01931262 , version 1 (22-11-2018)

Identifiants

  • HAL Id : hal-01931262 , version 1

Citer

Lisheng Sun-Hosoya, Isabelle Guyon, Michèle Sebag. ActivMetaL: Algorithm Recommendation with Active Meta Learning. IAL 2018 workshop, ECML PKDD, Sep 2018, Dublin, Ireland. , 2018. ⟨hal-01931262⟩
295 Consultations
657 Téléchargements

Partager

More