Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors

Résumé

This paper introduces an image classification method based on the encoding of a set of covariance matrices. This encoding relies on Fisher vectors adapted to the log-Euclidean metric: the log-Euclidean Fisher vectors (LE FV). This approach is next extended to full local Gaussian descriptors composed by a set of local mean vectors and local covariance matrices. For that, the local Gaussian model is transformed to a zero-mean Gaussian model with an augmented covariance matrix. All these approaches are used to encode handcrafted or deep learning features. Finally, they are applied in a remote sensing application on the UC Merced dataset which consists in classifying land cover images. A sensitivity analysis is carried out to evaluate the potential of the proposed LE FV.
Fichier principal
Vignette du fichier
Akodad18_IPTA.pdf (707.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01930156 , version 1 (21-11-2018)

Identifiants

Citer

Sara Akodad, Lionel Bombrun, Charles Yaacoub, Yannick Berthoumieu, Christian Germain. Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors. International Conference on Image Processing Theory, Tools and Applications (IPTA), Nov 2018, Xi'an, China. ⟨10.1109/IPTA.2018.8608154⟩. ⟨hal-01930156⟩
110 Consultations
313 Téléchargements

Altmetric

Partager

More