Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization - Archive ouverte HAL
Article Dans Une Revue Asymptotic Analysis Année : 2019

Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization

Résumé

We establish a convergence theorem for a class of nonlinear reaction-diffusion equations when the diffusion term is the subdifferential of a convex functional in a class of functionals of the calculus of variations equipped with the Mosco-convergence. The reaction term, which is not globally Lipschitz with respect to the state variable, gives rise to bounded solutions, and cover a wide variety of models. As a consequence we prove a homogenization theorem for this class under a stochastic homogenization framework.
Fichier principal
Vignette du fichier
STABILITY OF A CLASS OF NONLINEAR REACTION-DIFFUSION EQUATIONS AND STOCHASTIC HOMOGENIZATION.pdf (543.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01928187 , version 1 (20-11-2018)

Identifiants

Citer

Omar Anza Hafsa, Jean Philippe Mandallena, Gérard Michaille. Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization. Asymptotic Analysis, 2019, 115 (3-4), pp.169-221. ⟨10.3233/ASY-191531⟩. ⟨hal-01928187⟩

Collections

UNIMES TDS-MACS
185 Consultations
145 Téléchargements

Altmetric

Partager

More