An efficient Bayesian experimental calibration of dynamic thermal models - Archive ouverte HAL
Article Dans Une Revue Energy Année : 2018

An efficient Bayesian experimental calibration of dynamic thermal models

L. Raillon
  • Fonction : Auteur
  • PersonId : 1033156
Christian Ghiaus

Résumé

Experimental calibration of dynamic thermal models is required for model predictive control and characterization of building energy performance. In these applications, the uncertainty assessment of the parameter estimates is decisive; this is why a Bayesian calibration procedure (selection, calibration and validation) is presented. The calibration is based on an improved Metropolis-Hastings algorithm suitable for linear and Gaussian state-space models. The procedure, illustrated on a real house experiment, shows that the algorithm is more robust to initial conditions than a maximum likelihood optimization with a quasi-Newton algorithm. Furthermore, when the data are not informative enough, the use of prior distributions helps to regularize the problem.
Fichier principal
Vignette du fichier
Efficient bayesian preprint.pdf (1.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01926456 , version 1 (11-04-2019)

Identifiants

Citer

L. Raillon, Christian Ghiaus. An efficient Bayesian experimental calibration of dynamic thermal models. Energy, 2018, 152, pp.818 - 833. ⟨10.1016/j.energy.2018.03.168⟩. ⟨hal-01926456⟩
27 Consultations
72 Téléchargements

Altmetric

Partager

More