Bayesian learning for the Markowitz portfolio selection problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Bayesian learning for the Markowitz portfolio selection problem

Résumé

We study the Markowitz portfolio selection problem with unknown drift vector in the multidimensional framework. The prior belief on the uncertain expected rate of return is modeled by an arbitrary probability law, and a Bayesian approach from filtering theory is used to learn the posterior distribution about the drift given the observed market data of the assets. The Bayesian Markowitz problem is then embedded into an auxiliary standard control problem that we characterize by a dynamic programming method and prove the existence and uniqueness of a smooth solution to the related semi-linear partial differential equation (PDE). The optimal Markowitz portfolio strategy is explicitly computed in the case of a Gaussian prior distribution. Finally, we measure the quantitative impact of learning, updating the strategy from observed data, compared to non-learning, using a constant drift in an uncertain context, and analyze the sensitivity of the value of information w.r.t. various relevant parameters of our model.
Fichier principal
Vignette du fichier
BayesianLearning.pdf (952.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01923917 , version 1 (15-11-2018)

Identifiants

Citer

Carmine de Franco, Johann Nicolle, Huyên Pham. Bayesian learning for the Markowitz portfolio selection problem. 2018. ⟨hal-01923917⟩
224 Consultations
712 Téléchargements

Altmetric

Partager

More