On the power of euclidean division - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

On the power of euclidean division

Résumé

This paper presents a new abstract method for proving lower bounds in computational complexity. Based on the notion of topological and measurable entropy for dynamical systems, it is shown to generalise three previous lower bounds results from the literature in algebraic complexity. We use it to prove that maxflow, a Ptime complete problem, is not computable in polylogarithmic time on parallel random access machines (prams) working with real numbers. This improves on a result of Mulmuley since the class of machines considered extends the class “prams without bit operations”. We further improve on this result by showing that euclidean division cannot be computable in polylogarithmic time using division on the reals, pinpointing that euclidean division provides a significant boost in expressive power. On top of showing this new separation result, we show our method captures previous lower bounds results from the literature: Steele and Yao’s lower bounds for algebraic decision trees, Ben-Or’s lower bounds for algebraic computation trees, Cucker’s proof that NC is not equal to Ptime in the real case, and Mulmuley’s lower bounds for “prams without bit operations”.
Fichier principal
Vignette du fichier
main.pdf (642.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01921942 , version 1 (14-11-2018)
hal-01921942 , version 2 (23-01-2021)
hal-01921942 , version 3 (07-11-2022)
hal-01921942 , version 4 (10-02-2023)
hal-01921942 , version 5 (16-04-2024)
hal-01921942 , version 6 (14-10-2024)
hal-01921942 , version 7 (17-10-2024)

Identifiants

Citer

Thomas Seiller, Luc Pellissier, Ulysse Léchine. On the power of euclidean division. 2022. ⟨hal-01921942v3⟩
626 Consultations
237 Téléchargements

Altmetric

Partager

More