Riesz bases of reproducing kernels in small Fock spaces - Archive ouverte HAL
Article Dans Une Revue Journal of Fourier Analysis and Applications Année : 2020

Riesz bases of reproducing kernels in small Fock spaces

Karim Kellay
Youssef Omari
  • Fonction : Auteur
  • PersonId : 1038719

Résumé

We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces $\mathcal{F}^2_{\varphi}$, the spaces of entire functions $f$ such that $f\mathrm{e}^{-\varphi} \in L^{2}(\mathbb{C})$, where $\varphi(z)= (\log^+|z|)^{\beta+1}$, $0< \beta \leq 1$. The first results in this direction are due to Borichev-Lyubarskii who showed that $\varphi$ with $\beta=1$ is the largest weight for which the corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases were characterized by Baranov-Dumont-Hartman-Kellay in the case when $\beta=1$. The present paper answers a question in Baranov et al. by extending their results for all parameters $\beta\in (0,1)$. Our results are analogous to those obtained for the case $\beta=1$ and those proved for Riesz bases of complex exponentials for the Paley-Wiener spaces. We also obtain a description of complete interpolating sequences in small Fock spaces with corresponding uniform norm.
Fichier principal
Vignette du fichier
KO2019JFAA.pdf (287.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01918516 , version 1 (11-11-2018)
hal-01918516 , version 2 (24-11-2019)

Identifiants

Citer

Karim Kellay, Youssef Omari. Riesz bases of reproducing kernels in small Fock spaces. Journal of Fourier Analysis and Applications, 2020, 26 (1). ⟨hal-01918516v2⟩

Collections

CNRS IMB INSMI
180 Consultations
142 Téléchargements

Altmetric

Partager

More