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We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces F 2 ϕ , the spaces of entire functions f such that f e -ϕ ∈ L 2 (C), where ϕ(z) = (log + |z|) β+1 , 0 < β ≤ 1. The first results in this direction are due to Borichev-Lyubarskii who showed that ϕ with β = 1 is the largest weight for which the corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases were characterized by Baranov-Dumont-Hartman-Kellay in the case when β = 1. The present paper answers a question in Baranov et al. by extending their results for all parameters β ∈ (0, 1). Our results are analogous to those obtained for the case β = 1 and those proved for Riesz bases of complex exponentials for the Paley-Wiener spaces. We also obtain a description of complete interpolating sequences in small Fock spaces with corresponding uniform norm.

Introduction and statement of main results

For a subharmonic function ϕ tending to infinity when |z| → ∞, define the weighted Fock spaces F p ϕ , p = 2, ∞, the spaces of all entire functions f for which f e -ϕ belongs to L p (C). Seip and Wallstén [START_REF] Seip | Density theorems for sampling and interpolation in the Bargmann-Fock space[END_REF][START_REF] Seip | Density theorems for sampling and interpolation in the Bargmann-Fock space[END_REF] characterized interpolating and sampling sequences in these spaces when ϕ(z) = |z| 2 . They showed that there are no sequences which are simultaneously interpolating and sampling, and hence there are no Riesz bases of reproducing kernels in this case. However, the situation changes in small Fock spaces when the weight increases slowly. In [8, Theorem 2.8, Theorem 2.10], Borichev and Lyubarskii proved that the spaces F 2 ϕ with ϕ(z) = ϕ β (z) = log + |z| β+1 , 0 < β ≤ 1, possess Riesz bases of normalized reproducing kernels at real points. Another proof was given by Baranov, Belov and Borichev in [START_REF] Baranov | Fock type spaces with Riesz Bases of reproducing kernels and de Branges spaces[END_REF]Theorem 1.2] for the case where ϕ(z) = O(log + |z|) 2 with some regularity conditions. In this case, the Fock spaces F 2 ϕ can be viewed as de Branges spaces [3, Theorem 1.2], see also [START_REF] Baranov | Spectral synthesis in de Branges spaces[END_REF]. A more general approach based on the boundedness and invertibility of a discrete Hilbert transform was given by Belov, Mengestie and Seip in [START_REF] Mengestie | Discrete Hilbert transforms on sparse sequences[END_REF]. In a recent work, Baranov, Dumond, Hartmann and Kellay [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF] gave a characterization of complete interpolating sequences (or Riesz bases) in F 2 ϕ , when ϕ(z) = (log + |z|) 2 , in the spirit of Ingham-Kadets 1/4 theorem for the Paley-Wiener space (see [START_REF] Omari | Complete interpolating sequences small Fock spaces[END_REF] for the case of

F p ϕ , 1 ≤ p < ∞).
If the weight grows more rapidly than (log + |z|) 2 , then the associated Fock type space has no Riesz bases of (normalized) reproducing kernels, see [START_REF] Baranov | Fock type spaces with Riesz Bases of reproducing kernels and de Branges spaces[END_REF][START_REF] Borichev | Sampling and interpolation in large Bergman and Fock spaces[END_REF][START_REF] Borichev | Riesz Bases of reproducing kernels in Fock type spaces[END_REF][START_REF] Seip | Density theorems for sampling interpolation in the Bargmann-Fock space[END_REF][START_REF] Seip | Density theorems for sampling and interpolation in the Bargmann-Fock space[END_REF] and the references therein. Also, for the case when the corresponding Riesz measure of the weight ϕ is doubling, Marco, Massaneda and Ortega-Cerdà in [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF] proved that F 2 ϕ possesses no Riesz bases of normalized reproducing kernels. Finally, it follows from [START_REF] Isaev | On unconditional bases of reproducing kernels in Fock type spaces[END_REF] that there is no criterion for the existence of Riesz bases in a Fock-type space F 2 ϕ consisting of reproducing kernels in terms of the growth of the weight function ϕ only.

The main question we deal with in this paper was posed in [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF]. One looks for a characterization of Riesz bases of normalized reproducing kernels for F 2 ϕ β , where 0 < β < 1. Indeed, we obtain a complete description of such bases. Our results are analogous to the well known Avdonin theorem [START_REF] Avdonin | On the question of Riesz bases of exponential functions in L 2[END_REF] established for Riesz bases of complex exponentials in the Paley-Wiener spaces (see [START_REF] Young | An introduction to nonharmonic Fourier series[END_REF]Theorem 14,p. 178] and [2, p. 102] for more general statement) and to those obtained for F 2 ϕ 1 (see [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF]Theorem 1.1]). We also give a characterization of complete interpolating sequences in F ∞ ϕ β for 0 < β < 1. The case when β = 1 was studied in [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF]Theorem 1.2].

1.1. Description of Riesz bases of F 2 ϕ . Let ϕ be an increasing function defined on [0, ∞) tending to infinity. We extend ϕ into the whole complex plane C by ϕ(z) = ϕ(|z|) and we define the corresponding Fock type space

F 2 ϕ := f ∈ Hol(C) : f 2 ϕ,2 := C |f (z)| 2 e -2ϕ(z) dm(z) < ∞ ,
here m stands for the area Lebesgue measure. Since point evaluations are bounded linear functionals on F 2 ϕ , by the representation Riesz Theorem the space F 2 ϕ endowed with the inner product

f, g ϕ := C f (z)g(z)e -2ϕ(z) dm(z), f, g ∈ F 2 ϕ ,
is a reproducing kernel Hilbert space (RKHS). Let k z be its reproducing kernel at z ∈ C, that is

f (z) = f, k z ϕ , f ∈ F 2 ϕ . We denote by k z = k z / k z ϕ,2 the normalized reproducing kernel of F 2 ϕ .
Let Γ be a sequence of complex numbers. A system of normalized reproducing kernels

K Γ = {k γ } γ∈Γ is said to be a Riesz basis for F 2 ϕ if K Γ is complete and if for some constant C ≥ 1 we have 1 C γ∈Γ |a γ | 2 ≤ γ∈Γ a γ k γ 2 ϕ,2 ≤ C γ∈Γ |a γ | 2 ,
for each finite sequence {a γ }. This means that Γ is a complete interpolating sequence for F 2 ϕ . In an equivalent way, the operator

T Γ : F 2 ϕ -→ ℓ 2 (Γ) f -→ ( f, k γ ) γ∈Γ is bounded and invertible from F 2 ϕ to ℓ 2 (Γ). We next set d(z, w) = |z -w| 1 + min(|z|, |w|) , z, w ∈ C. A set Σ ⊂ C is said to be d-separated if there is d Σ > 0 such that inf {d(σ, σ * ) : σ, σ * ∈ Σ, σ = σ * } ≥ d Σ .
We denote by D(z, r) the Euclidean disk of radius r centered at z. For δ < 1 and 0 = z ∈ C the ball corresponding to the distance d is given by 

D d (z, δ) := {w ∈ C : d(z, w) < δ}.
(1) Γ is d-separated, (2) δ n /(1 + n) 1 β -1 n≥0
is a bounded sequence,

(3) there exists N 1 such that

lim sup n 1 (1 + n + N) 1 β -(1 + n) 1 β n+N k=n+1 δ k < 1 2(1 + β) 1 β
.

(1.1)

1.2. Complete interpolating sequences in uniform Fock spaces F ∞ ϕ . In this subsection we consider the uniform Fock type space, associated with ϕ, given as follows

F ∞ ϕ := f ∈ Hol(C) : f ϕ,∞ := sup z∈C |f (z)|e -ϕ(z) < ∞ . F ∞ ϕ endowed with the norm . ϕ,∞ is clearly a Banach space. Let Γ = {γ n } be a sequence in C. Γ is said to be sampling for F ∞ ϕ whenever there exists C ≥ 1 such that f ϕ,∞ ≤ C f ϕ,∞,Γ , for every f ∈ F ∞ ϕ , where f ϕ,∞,Γ := sup γ∈Γ |f (γ)|e -ϕ(γ) . Γ is called an interpolating set for F ∞ ϕ if for every sequence v = (v γ ) γ∈Γ such that v ϕ,∞,Γ < ∞ there exists f ∈ F ∞ ϕ that satisfies f (γ) = v γ , for every γ ∈ Γ.
Finally, Γ is said to be a complete interpolating sequence for F ∞ ϕ if Γ is simultaneously a sampling and an interpolating set for F ∞ ϕ .

The following result describes complete interpolating sequences for F ∞ ϕ , the case β = 1 was obtained in [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF].

Theorem 1.2. Let ϕ(r) = log + r β+1 where 0 < β < 1. Let Γ be a sequence of complex numbers and let

γ * ∈ C \ Γ. Then Γ ∪ {γ * } is a complete interpolating set for F ∞ ϕ if and only if K Γ is a Riesz basis for F 2 ϕ .
1.3. Remarks. Several remarks are in order before we turn to the proofs of our theorems:

1. Complete interpolating sequences for F p ϕ , p = 2, ∞ are characterized by comparing them to the sequence

Λ = λ n := exp 1 + n 1 + β 1 β e iθn , θ n ∈ R : n ≥ 0 , (1.2) 
which is a complete interpolating sequence for F 2 ϕ and Λ ∪ {λ * } is a complete interpolating sequence for F ∞ ϕ where λ * ∈ C \ Λ (for p = 2 see [3, Theorem 1.2] and Lemma 2.6 and for the case p = ∞ see Lemma 2.7 ).

2.

The diagonal asymptotic estimates of the reproducing kernel play an important role in the study of Riesz bases. Let ρ(z) := (∆ϕ(z)) -1/2 = |z| (log |z|) 1-β 2 , as stated in Corollary 2.3 the kernel admits the following estimates

e 2ϕ(z) ρ(z) 2 k z 2 ϕ,2 e 2ϕ(z) |z|ρ(z) , |z| > 1.
Furthermore the upper estimate is attained on a subset of z (see Lemma 2.2 for the precise diagonal asymptotic estimates).

3. The case β = 1 was treated in [5, Theorem 1.1] under conditions (1), (2) and under the hypothesis that there exists N 1 such that

sup n 1 N n+N k=n+1 δ k < 1 4 . (1.3)
The family K Λ = {k λ } λ∈Λ (associated with β = 1) is a Riesz basis for F 2 ϕ 1 . Condition (1.1) may appear different to (1.3) in the case β = 1; however, these two conditions are equivalent for the problem studied here (see Remark 5.1).

Condition (1.1) can be written as

∆ N := lim sup n 1 log |λ n+N | -log |λ n | n+N k=n+1 δ k < 1 2 . (1.4) For N = 1, condition (1.1) is equivalent to sup n≥1 log |γ n | -log |λ n | n 1 β -1 = sup n≥1 |δ n | n 1 β -1 < 1 2β(1 + β) 1 β , (1.5) 
(see Remark 5.1). Conditions (1.4) and (1.5) look similar to those used in some related results. We mention here the well known 1/4 Kadets-Ingham's theorem [START_REF] Kadets | The exact value of the Paley-Wiener constant[END_REF] on Riesz bases of exponentials in the Paley-Wiener spaces P W 2 α , and the results by Marzo and Seip [START_REF] Marzo | The Kadets 1/4 Theorem for polynomials[END_REF] for spaces of polynomials. For fixed N, (1.4) looks similar to Avdonin's condition [START_REF] Avdonin | On the question of Riesz bases of exponential functions in L 2[END_REF]. It is interesting to note that conditions (1)-(3) describe completely Riesz bases of reproducing kernels in F 2 ϕ ; on the contrary, in the Paley-Wiener spaces, these conditions are just sufficient.

5.

We notice again that our spaces possess Riesz bases of normalized reproducing kernels at real points, and hence they can be viewed as de Branges spaces [START_REF] Baranov | Spectral synthesis in de Branges spaces[END_REF][START_REF] Baranov | Fock type spaces with Riesz Bases of reproducing kernels and de Branges spaces[END_REF]. Using the boundedness and invertibility results on the discrete Hilbert transform on lacunary sequences, Belov, Mengestie and Seip gave another characterization of Riesz bases, where our summability condition (1.1) corresponds to a Muckenhoupt-type condition; for further details we refer to [START_REF] Mengestie | Discrete Hilbert transforms on sparse sequences[END_REF]Theorem 1.1]. Our approach consists of using Bari's theorem on Riesz bases in Hilbert spaces, as in the proof of [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF]Theorem 1.1].

The plan of our paper is as following. In the next section we state diagonal asymptotic estimates on the reproducing kernel. We then show that Λ and Λ ∪ {λ * } are complete interpolating sequences for F 2 ϕ and F ∞ ϕ , respectively. Furthermore, we deal with the separation condition. Section 3 is devoted to proving Theorem 1.1. The proof of Theorem 1.2 is presented in Section 4. We end our paper by some remarks in the last section.

Throughout the paper, we use the following notations:

• A B means that there is an absolute constant C such that A ≤ CB.

• A ≍ B if both A B and B A hold.
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Key lemmas and preliminary results

In this section we prove some preliminary results and some key lemmas. First, we establish estimates on the reproducing kernel at the diagonal also get necessary estimates on certain infinite products and also preliminary results concerning the separation condition. Throughout the rest of this paper we denote ϕ(r) = ϕ β (r) = log + r β+1 , where 0 < β < 1.

2.1.

Estimates on the norm of the reproducing kernel. We begin by the following lemma which was proved in [3, Lemma 3.1] and which will be used repeatedly throughout the paper.

Lemma 2.1. For every nonnegative integer n we have

z n 2 ϕ,2 ≍ 1 + n 1 + β 1-β 2β exp 2β 1 + n 1 + β 1+β β
.

Next we produce an asymptotic estimate on the reproducing kernel k z of F 2 ϕ on the diagonal. Note that such estimate was obtained for the points λ ∈ Λ by Baranov, Belov and Borichev in [START_REF] Baranov | Fock type spaces with Riesz Bases of reproducing kernels and de Branges spaces[END_REF]Lemma 3.2]. They proved the estimate directly by using Hardy's convexity theorem. Here we use Laplace's method to deal with the rest of complex numbers z ∈ C. We denote by [x] the integer part of a real x.

Lemma 2.2. Let |z| = e s , n z = [(1 + β)s β ]. Set g s (t) = st -β t 1+β 1+β β . Let ϕ(z) = max(g s (n z ), g s (n z + 1)). We have k z 2 ϕ,2 ≍ e 2 ϕ(z) |z|ρ(z) + e 2ϕ(z) ρ 2 (z) , |z| > 1,
where ρ(z

) := (∆ϕ(z)) -1/2 = |z| (log |z|) 1-β 2 . Proof. Let |z| = e s . Note that g ′ s (t) = 0 for t = (1 + β)s β and ϕ(z) ≤ ϕ(z). Since k z 2 ϕ,2 = n≥0 |z| 2n / z n 2 ϕ,2 , by Lemma 2.1 we have e 2s k e s 2 ϕ,2 ≍ n≥1 e 2gs(n) (1 + n) 1-β 2β
nz 0 e 2gs(t)

(1 + t)

1-β 2β

dt + e 2gs(nz)

(1 + n z ) 1-β 2β + e 2gs(nz+1) (2 + n z ) 1-β 2β + ∞ nz+1 e 2gs(t) (1 + t) 1-β 2β dt e 2 ϕ(z) s 1-β 2 + ∞ 0 e 2s 1+β x-β x 1+β 1+β β s 1-β 2 (1 + x) 1-β 2β s β dx := e 2 ϕ(z) s 1-β 2 + s β s 1-β 2 ∞ 0 e -2s 1+β ψ(x) f (x)dx, where ψ(x) = β x 1+β 1+β β -x and f (x) = 1/(1 + x) 1-β 2β . We have ψ ′ (x) = x 1+β 1 β -1. Let x 0 = 1 + β. Then ψ ′ (x 0 ) = 0 and ψ(x 0 ) = -1. Since ψ ′′ (x) = x 1 β -1 β(1+β) 1 β > 0, x ≥ 1, we get by Laplace's method [9] ∞ 0 e -Sψ(x) f (x)dx ∼ 2π Sψ ′′ (x 0 ) f (x 0 )e -Sψ(x 0 ) , S → +∞.
For S = 2s 1+β → +∞, we get

k z 2 ϕ,2 = k e s 2 ϕ,2 e 2 ϕ(z) e 2s s 1-β 2 + e 2s 1+β e 2s s 1-β = e 2 ϕ(z) |z| 2 (log |z|) 1-β 2 + e 2ϕ(z) |z| 2 (log |z|) 1-β .
On the other hand, using Laplace's method again, we obtain

I := 1+β 0 e 2s 1+β x-β x 1+β 1+β β dx ∼ 2π 2s 1+β ψ ′′ (x 0 ) e 2s 1+β = πβ(1 + β) s 1+β e 2s 1+β .
Also, we have

J := 1+β 1+β-2/s β e 2s 1+β x-β x 1+β 1+β β dx = 2/s β 0 exp 2s 1+β (1 + β -u) -β 1 - u 1 + β 1+β β du = 2/s β 0 exp 2s 1+β 1 - 1 2β(β + 1) u 2 du ≤ e 2s 1+β ∞ 0 e -s 1+β u 2 β(β+1) du = 1 2 β(β + 1)π s 1+β e 2s 1+β ∼ 1 2 I.
So, we get

e 2s k e s 2 ϕ,2 nz-1 0 e 2gs(t)
(1 + t)

1-β 2β

dt + e 2gs(nz)

(1 + n z ) 1-β 2β + e 2gs(nz+1) (2 + n z ) 1-β 2β e 2 ϕ(z) s 1-β 2 + s β s 1-β 2 1+β-2/s β 0 e 2s 1+β x-β x 1+β 1+β β (1 + x) 1-β 2β dx = e 2 ϕ(z) s 1-β 2 + s β s 1-β 2 I -J ≍ e 2 ϕ(z) s 1-β 2 + s β s 1-β 2 e 2s 1+β √ s 1+β .
Therefore,

k z 2 ϕ,2 e 2 ϕ(z) |z| 2 (log |z|) 1-β 2 + e 2ϕ(z) |z| 2 (log |z|) 1-β , |z| > 1.
This completes the proof.

We have the following corollary, with identity (2.2) obtained already in [3, Lemma 3.2]

Corollary 2.3. We have

e 2ϕ(z) ρ(z) 2 k z 2 ϕ,2 e 2ϕ(z) |z|ρ(z) , |z| > 1. (2.1)
Furthermore, for every λ n ∈ Λ, where Λ is the sequence given in (1.2), we have

k λn 2 ϕ,2 ≍ e 2ϕ(λn) |λ n |ρ(λ n ) ≍ |e n (λ n )| 2 , (2.2 
) 

where e n (z) = z n / z n ϕ,2 . Also, if σ n = exp n+1/2 1+β 1 β , n ≥ 2, then k σn 2 ϕ,2 ≍ e 2ϕ(σn) ρ(σ n ) 2 . ( 2 
:= [(1 + β)s β ], g s (t) = st -β t 1+β β+1 β . By Lemma 2.2 we have k z 2 ϕ,2 ≍ 1 |z| 2 (log |z|) 1-β 2
e 2 max{gs(nz),gs(nz+1)} + e 2ϕ(z)-2 1-β 4 log log |z| .

We write n z = (1 + β)s β + δ z , for some δ z ∈ (-1, 0]. Simple calculations show that for j ∈ {0, 1} we have

g s (n z + j) -ϕ(z) + 1 -β 4 log s = s (1 + β)s β + δ z + j -β (1 + β)s β + δ z + j 1 + β β+1 β -s β+1 + 1 -β 4 log s = 1 -β 4 log s - 1 + o(1) 2β(1 + β) (δ z + j) 2 s 1-β -→ |z|→∞ -∞, if and only if β(1 -β 2 ) 2 + o(1) log s s 1-β = o (δ z + j) 2 , |z| → ∞. Now, if z = σ n , then δ 2 z = (δ z + 1) 2 = 1 4
and hence the latter estimate holds. Thus (2.3) follows immediately.

Remark. For regular radial weights satisfying the estimate (log r) 2 = O(ϕ(r)), when r → ∞, the reproducing kernel of F 2 ϕ possesses the property k z (z) ≍ ∆ϕ(z)e 2ϕ(z) (see [START_REF] Baranov | Fock type spaces with Riesz Bases of reproducing kernels and de Branges spaces[END_REF][START_REF] Borichev | Sampling and interpolation in large Bergman and Fock spaces[END_REF][START_REF] Borichev | Riesz Bases of reproducing kernels in Fock type spaces[END_REF]). This estimate remains valid for the kernel of F 2 ϕ when the associated Riesz measure of the weight ϕ is doubling [START_REF] Marco | Interpolating and sampling sequences for entire functions[END_REF]Lemma 21]. Estimate (2.2) proves that the case β < 1 is quite different from the case when β = 1. Indeed, for β = 1 the reproducing kernel admits the estimate k z 2 ϕ 1 ,2 ≍ ∆ϕ 1 (z)e 2ϕ 1 (z) , for every z ∈ C. However, in (2.2) we have for every

λ ∈ Λ that k λ 2 ϕ β ,2 ≍ e 2ϕ β (λ) / |λ| 2 log(λ) 1-β 2
, and hence

∆ϕ β (λ)e 2ϕ β (λ) = o k λ 2 ϕ β ,2
, whenever 0 < β < 1. This could explain the difference in the results obtained about Riesz bases of normalized reproducing kernels in the situation β = 1 and 0 < β < 1.

Complete interpolating sequences in

F p ϕ , p = 2, ∞.
With a given sequence Γ of complex numbers, we associate the infinite product

G Γ (z) = γ∈Γ 1 - z γ , z ∈ C, whenever it converges.
In what follows, we denote by dist(z, Γ) the Euclidean distance between z and the sequence Γ.

The following lemma provides estimates on the infinite product G Γ associated with a sequence Γ defined by

Γ := γ n := exp 1 + n 1 + β 1 β e δn e iθn , θ n ∈ R : n 0 . (2.4)
Recall that dist(z, Γ)

∆ N := lim sup n→∞ 1 log |λ n+N | -log |λ n | n+N k=n+1 δ k .
(1 + |z|) 3 2 +∆ N +ε ≤ |G Γ (z)| e -ϕ(z) ≤ C dist(z, Γ) (1 + |z|) 3 2 -∆ N -ε , z ∈ C. Proof. Let z ∈ C with |z| = e t = exp s 1+β 1 β . Let also m be the integer such that |γ m-1 | ≤ |z| < |γ m | and suppose that dist(z, Γ) = |z -γ m-1 |. Then log |G Γ (z)| = 0 n<m-1 log 1 - z γ n + log 1 - z γ m-1 + O(1) = m-1 n=0 log z γ n + log dist(z, Γ) -t + O(1) = mt - m n=1 k 1 + β 1 β - m-1 n=1 δ k + log dist(z, Γ) -t + O(1), t → ∞.
Furthermore, for every α = -1 we have 

m k=1 k α = m α+1 α + 1 + m α 2 (1 + o(1)) . ( 2 
δ k ∆ N + ε 2 p-1 j=0 (u jN +N -u jN ) + O(m 1 β -1 ) ∆ N + ε 2 t + o(t), t → ∞.
Consequently,

log |G Γ (z)| mt -β m 1 + β 1 β +1 - 3 2 ∓ ∆ N ∓ ε 2 m 1 + β 1 β + log dist(z, Γ) + o(t) t β+1 - 3 2 ∓ ∆ N ∓ ε 2 t + log dist(z, Γ) + o(t).
Finally, there exist two positive numbers A and B depending on ε such that

A dist(z, Λ) (1 + |z|) 3 2 +∆ N +ε ≤ |G Γ (z)| e -ϕ(z) ≤ B dist(z, Λ) (1 + |z|) 3 2 -∆ N -ε , z ∈ C.
We need the following standard ingredient, which we single out as a lemma.

Lemma 2.5. Let Γ be a sequence defined as in (2.4). We have

C dist(z, Γ) 2 (1 + |z|) 3+α dm(z) < ∞ ⇐⇒ α > 1.
Proof. Indeed, for every

1 2 (|γ n-1 | + |γ n |) r 1 2 (|γ n | + |γ n+1 |), we have dist(re iθ , Γ) ≍ |re iθ -γ n |. So, we get C dist(z, Γ) 2 (1 + |z|) 3+α dm(z) ≍ n 0 1 2 (|γn|+|γ n+1 |) 1 2 (|γ n-1 |+|γn|) 2π 0 |re iθ -γ n | 2 (1 + r) 3+α rdθdr ≍ n 0 1 |γ n | α-1 .
Therefore, the last sum is finite if and only if α > 1.

Next we extend a result of Borichev and Lyubarskii [8, Theorem 2.8]. They proved that {k λn } n≥0 is a Riesz basis for F 2 ϕ where λ 0 = 0, | λ n | = exp [(w n+1 -w n-1 )/4] and w n := log z n 2 = c(n + 1) 1+ 1 β + O(log n). Their proof was based on Bari's theorem (see [15, section A.5.7.1]). Using the estimate on the moments z n ϕ,2 given in Lemma 2.1, we produce a family of sequences of similar kind. These sequences could be viewed as a reference family of complete interpolating sequences for F 2 ϕ and will play a crucial tool in the proof of the main theorems. A proof of this lemma was given by Baranov-Belov-Borichev in [3, Theorem 1.2] using the results of Belov-Mengestie-Seip [START_REF] Mengestie | Discrete Hilbert transforms on sparse sequences[END_REF]. However, for the sake of completeness, we give here another proof that uses Bari's theorem as in [START_REF] Borichev | Riesz Bases of reproducing kernels in Fock type spaces[END_REF].

Lemma 2.6. Let Λ be a sequence defined by (1.2). Then K Λ = {k λ } λ∈Λ is a Riesz basis for F 2 ϕ . Proof. Let n 0, e n (z) = z n / z n ϕ,2 , and h n := e -inθn e n . We have

h n -k λn 2 ϕ,2 = e -inθn e n - e n (λ n ) k λn ϕ,2 e n - k =n e k (λ n ) k λn ϕ,2 e k 2 ϕ,2 = 1 - |e n (|λ n |)| k λn ϕ,2 2 
J 1 + k =n |e k (λ n )| 2 k λn 2 ϕ,2 J 2 .
Furthermore,

J 1 = 1 - |e n (|λ n |)| k λn ϕ,2 2 ≤ 1 - |e n (λ n )| 2 k λn 2 ϕ,2 = J 2 .
Consequently,

h n -k λn 2 ϕ,2 ≍ k =n |e k (λ n )| 2 k λn 2 ϕ,2 k =n e k (λ n ) e n (λ n ) 2 .
On the other hand, for k = n we have

|e n (λ n )| 2 |e k (λ n )| 2 ≍ 1 + k 1 + n 1-β 2β e 2c(n,k) , where c(n, k) := (n -k) 1 + n 1 + β 1 β + β 1 + k 1 + β 1+β β - 1 + n 1 + β 1+β β .
Therefore, by simple computations we get

c(n, k) (1 + β) -1+β β |k -n| 2 (1 + n) 1 β -1 . Thus, ∞ n=0 h n -k λn 2 ϕ,2 ≍ ∞ n=0 k =n |e k (λ n )| 2 k λn 2 ϕ,2 ∞ n=0 k =n 1 + n 1 + k 1-β 2β e -2(1+β) -1+β β |k-n| 2 (1+n) 1 β -1 < ∞.
Note that Λ = Γ with δ k = 0. So Lemmas 2.4 and 2.5 imply that Λ is a uniqueness set for F 2 ϕ , that is the unique function in F 2 ϕ that vanishes on Λ is the zero function. Also, for any λ ∈ Λ the sequence Λ \ {λ} is a zero sequence of F 2 ϕ and, hence, the system K Λ is complete and minimal in F 2 ϕ and n h nk λn 2 ϕ,2 < ∞. Bari's theorem [15, section A.5.7.1] ensures that K Λ is a Riesz basis for F 2 ϕ .

For F ∞ ϕ we have the following result

Lemma 2.7. Let λ * ∈ C \ Λ. Then Λ ∪ {λ * } is a complete interpolating sequence for F ∞ ϕ .
Proof. First let us prove that Λ = Λ ∪ {λ * } is a uniqueness set for F ∞ ϕ . Indeed, suppose that λ * = 0 and take f ∈ F ∞ ϕ vanishing on Λ ∪ {λ * }, so that f (z) = (1 -z/λ * )h(z)G Λ (z) where h is an entire function. By Lemma 2.4 we get

|h(z)| dist(z, Λ) (1 + |z|) 1/2+ε |f (z)|e -ϕ(z) 1, z ∈ C.
It follows that h is the zero function. It remains to show that Λ is an interpolating set for F ∞ ϕ . For this purpose let v = (v λ ) λ∈ Λ be a sequence of complex numbers such that v ϕ,∞, Λ < ∞. Put F (z) = (1 -z/λ * )G Λ (z) and consider the function

F v (z) = λ∈ Λ v λ F (z) F ′ (λ)(z -λ) , z ∈ C.
We have

|F v (z)| ≤ λ∈ Λ |v λ | F (z) F ′ (λ)(z -λ) v ϕ,∞, Λ λ∈ Λ e ϕ(λ) |z| |λ| G Λ (z) G ′ Λ (λ)(z -λ) . Let z ∈ C and p ∈ N such that |λ p-1 | ≤ |z| < |λ p |. Suppose that 0 = |λ * | < |λ 1 | and write Λ = (λ n ) n≥-1 , where λ -1 = λ * . Let |z| = e t and u n = log |λ n |. We have λ∈ Λ e ϕ(λ) |z| |λ| G Λ (z) G ′ Λ (λ)(z -λ) ≍ n≤p-1
. . .

I 1 + n≥p e ϕ(λn) dist(z, Λ) |z -λ n | |z| p |λ n | n p-1 k=0 1 |λ k | n-1 k=0 |λ k | I 2
. By (2.5),

I 1 = n≤p-1 e ϕ(λn) dist(z, Λ) |z -λ n | |z| p |λ n | n p-1 k=0 1 |λ k | n-1 k=0 |λ k | ≤ |z| p n≤p-1 exp u β+1 n -(n + 1)u n + n k=0 u k - p-1 k=0 u k = e pt-βu β+1 p-1 n≤p-1 exp u n 2 + d β u 1-β n - u p-1 2 + d β u 1-β p-1 ≤ e pt-βu β+1 p-1 n≥0 e -c|u p-1 -un| exp ϕ(z) - 1 2β(β + 1) + o(1) (p -s) 2 t 1-β ≤ e ϕ(z)
and

I 2 ≍ |z| p+1 n≥p exp u β+1 n -(1 + n)u n + n-1 k=p u k ≤ e (p+1)t-βu β+1 p n≥0 exp - 1 2 |u n -u p | + d β u 1-β n -u 1-β p e (p+1)t-βu β+1 p ≤ e ϕ(z) .
Thus, the interpolating function F v belongs to F ∞ ϕ . This completes the proof.

2.3. d-separated and log-separated sequences. A sequence {µ n } of real numbers is said to be separated whenever there exists a constant δ > 0 such that

inf n =m |µ n -µ m | ≥ δ.
Let Γ be a sequence of complex numbers. It is not difficult to see that if log Γ := {log |γ| : γ ∈ Γ} is separated then Γ is d-separated, and also if Γ is d-separated then log Γ is a finite union of separated sequences. Hence Γ is a finite union of d-separated sequences if and only if log Γ is a finite union of separated real sequences.

The following lemma was established by using a Bernstein type inequality in [START_REF] Baranov | Sampling, interpolation and Riesz Bases in small Fock spaces[END_REF] in the case β = 1. The proof when 0 < β < 1 is different. Lemma 2.8. Let Γ be a sequence defined by (2.4).

Then γn∈Γ | f, k γn | 2 ≤ C(Γ) f 2 ϕ,2 , (2.6)
for every f ∈ F 2 ϕ if and only if {log |γ n | : γ n ∈ Γ} is a finite union of separated sequences.

Proof. Let f be a function in F 2 ϕ . According to Lemma 2.6, the system K Λ is a Riesz basis for F 2 ϕ and, hence,

f (z) = λn∈Λ f, k λn g λn (z), z ∈ C,
where G Λ := {g λn : λ n ∈ Λ} is the unique biorthogonal system of K Λ given by

g λn (z) = k λn G ′ Λ (λ n ) G Λ (z) z -λ n , z ∈ C, (2.7) 
and G Λ is the infinite product associated with Λ. We then get

m≥0 f, k γm 2 = m≥0 n≥0 f, k λn g λn , k γm 2 = m≥0 n≥0 f, k λn g λn , k γm 2 .
Since the operator f → ( f, k λn ) is an isomorphism between F 2 ϕ and ℓ 2 , relation (2.6) is equivalent to the fact that the matrix C = (C n,m ) n,m defines a bounded operator on ℓ 2 , where

|C n,m | = | g λn , k γm | = k λn ϕ,2 k γm ϕ,2 G Λ (γ m ) G ′ Λ (λ n )(λ n -γ m )
.

Set p m = [(1 + β) (log |γ m |) β ] -1. We have |G Λ (γ m )| ≍ dist(γ m , Λ) γ m pm k=0 γ m λ k and |G ′ Λ (λ n )| ≍ 1 |λ n | n k=0 λ n λ k .
Hence,

|C n,m | ≍ k λn ϕ,2 k γm ϕ,2 dist(γ m , Λ) |λ n -γ m | |γ m | pm |λ n | n pm k=0 1 |λ k | n k=0 |λ k |.
(2.8)

By (2.
2), we have

k λn ϕ,2 ≍ |e n (λ n )| and k γm ϕ,2 ≥ |e pm (γ m )| thus we obtain |C n,m | z pm ϕ,2 z n ϕ,2 dist(γ m , Λ) |λ n -γ m | pm k=0 1 |λ k | n k=0 |λ k | ≍ 1 + p m 1 + n 1-β 4β dist(γ m , Λ) |λ n -γ m | e -α(n,m) , where α(n, m) = β 1 + n 1 + β 1+β β -β 1 + p m 1 + β 1+β β + pm k=0 1 + k 1 + β 1 β - n k=0 1 + k 1 + β 1 β = 1 2 1 + p m 1 + β 1 β - 1 + n 1 + β 1 β + 1 + o(1) 12β(1 + β) 1 + p m 1 + β 1-β β - 1 + n 1 + β 1-β β . Now, if |γ m | ≥ |λ n |, then we have dist(γ m , Λ) ≤ |λ n -γ m |, and hence, |C n,m | e -c β (1+pm) 1 β -(1+n) 1 β
.

(2.9)

If |γ m | < |λ n |, then dist(γ m , Λ) ≤ |λ pm | (or |γ m |) and |λ n -γ m | ≍ |λ n |.
Again we have (2.9). Thus (2.9) holds in both cases.

On the other hand, by Corollary 2.3 and by (2.8), we get

|C n,m | log |γ m | log |λ n | 1-β 4 e ϕ(λn)-ϕ(γm) dist(γ m , Λ) |λ n -γ m | |γ m | pm+1 |λ n | n+1 pm k=0 1 |λ k | n k=0 |λ k | ≍ 1 + p m 1 + n 1-β 4β dist(γ m , Λ) |λ n -γ m | e -α(n,m) ,
where

α(n, m) = 1 + p m 1 + β 1+β β - 1 + n 1 + β 1+β β + (1 + n) 1 + n 1 + β 1 β -(1 + p m ) 1 + p m 1 + β 1+β β + pm k=0 1 + k 1 + β 1 β - n k=0 1 + k 1 + β 1 β = 1 2 1 + p m 1 + β 1 β - 1 + n 1 + β 1 β + 1 + o(1) 12β(1 + β) 1 + p m 1 + β 1-β β - 1 + n 1 + β 1-β β .
In the same way we get

|C n,m | e -c β (1+pm) 1 β -(1+n) 1 β
.

Finally,

e -c β (1+pm) 1 β -(1+n) 1 β |C n,m | e -c β (1+pm) 1 β -(1+n) 1 β . If log |γ| : γ ∈ Γ is a finite union of separated sequences, then C = (C n,m ) is bounded on ℓ 2 .
In the opposite direction, since K Λ is a Riesz basis, let g λ be the function given in (2.7), g λ 2 ϕ,2 ≍ 1 and as before we have

1 γ∈Γ |g λ (γ)| 2 k γ (γ) γ∈Γ∩D d (λ,δ) |g λ (γ)| 2 k γ (γ) γ∈Γ∩D d (λ,δ) e -c β | log |γ|-log |λ|| ≍ Card(Γ ∩ D d (λ, δ)). Since dist(γ, Λ) ≍ |γ -λ|, we get sup λ∈Λ Card(Γ ∩ D d (λ, δ)) < ∞.
Therefore Γ is a finite union of d-separated sequences.

Proof of Theorem 1.1

Proof. "⇐="

First of all, since the sequence Γ is d-separated, by Lemma 2.8 the operator T Γ is bounded from F 2 ϕ to ℓ 2 . On the other hand, the sequence Γ is a uniqueness set for F 2 ϕ , and for any γ ∈ Γ, the sequence Γ \ {γ} is a zero set for F 2 ϕ . Indeed, let f ∈ F 2 ϕ be such that f | Γ = 0. By Hadamard's factorization theorem [START_REF] Levin | Lectures on entire functions[END_REF] we can write f = hG Γ , for an entire function h. Since f ∈ F 2 ϕ , by Lemma 2.3 we have

|f (z)| f ϕ,2 k z ϕ,2 e ϕ(z)
|z|(log |z|)

1-β 4 , |z| > 1. Lemma 2.4 implies that |h(z)| dist(z, Γ) (1 + |z|) 3/2+c N |f (z)|e -ϕ(z) 1 |z|(log |z|) 1-β 4 , |z| > 1,
where c N = ∆ N + ε, for a small enough ε so that c N < 1/2. Then h must be a polynomial. Combining this fact with Lemma 2.5, we conclude that h must be identically zero, and hence Γ is a uniqueness set for F 2 ϕ , therefore T Γ is injective. Futhermore T Γ g n = e n+1 , n ≥ 0, where e n+1 is the (n + 1)-th element of the canonical basis of ℓ 2 , and

g n (z) = k γn ϕ,2 G ′ Γ (γ n ) G Γ (z) z -γ n , z ∈ C.
Therefore, the range of T Γ is dense in ℓ 2 . In order to prove that T Γ is onto, we associate with each a ∈ ℓ 2 the function H a as follows :

H a (z) = γ∈Γ a γ k γ ϕ,2 G ′ Γ (γ) G Γ (z) z -γ , z ∈ C.
The estimate of the reproducing kernel given in Corollary 2.3 and the estimate on G Γ proved in Lemma 2.4 ensure that the above series converges uniformly on every compact set of C. It remains now to show that H a ∈ F 2 ϕ . Indeed, since K Λ is a Riesz basis for F 2 ϕ (see Lemma 2.6), we have

H a 2 ϕ,2 ≍ m 0 | H a , k λm | 2 = m 0 n 0 a n G Γ (λ m ) G ′ Γ (γ n )(λ m -γ n ) k γn ϕ,2 k λm ϕ,2 2 
.

Hence {H a } a∈ℓ 2 ⊂ F 2 ϕ if and only if the matrix A = (A n,m ) n,m 0 defines a bounded operator on ℓ 2 , where

|A n,m | = G Γ (λ m ) G ′ Γ (γ n )(λ m -γ n ) k γn ϕ,2 k λm ϕ,2 .
Recall that for every z ∈ C there exists p ∈ N such that |γ p-1 | ≤ |z| < |γ p |. We have

|G Γ (z)| ≍ dist(z, Γ) |z| p-1 k=0 |z/γ k | and |G ′ Γ (γ n )| ≍ 1 |γ n | n-1 k=0 γ n γ k . Since δ n = O (1 + n) 1 β -1
, there exists M > 0 such that for every m ≥ 0 there exists |i| ≤ M such that the index p corresponding to λ m is m + i. Consequently,

|A n,m | ≍ k γn ϕ,2 k λm ϕ,2 dist(λ m , Γ) |λ m -γ n | |γ n | λ m m+i-1 k=0 λ m γ k n-1 k=0 γ k γ n .
By Lemma 2.2 we have

k z 2 ϕ,2 ≍ |e nz-1 (z)| 2 + |e nz (z)| 2 + e 2ϕ(z) ρ(z) 2 ,
where

n z = [(1 + β) log β |z|]. Again, since δ n = O((1 + n) 1 β -1 ), for every n ≥ 0 there exists |j| ≤ M satisfying k γn 2 ϕ,2 ≍ |e n+j (γ n )| 2 + e 2ϕ(γn) |γ n | 2 (log |γ n |) 1-β .
Also for every m ≥ 0 we have

k λm ϕ,2 ≍ |e m (λ m )| ≍ e ϕ(λn) |λ m | (log |λ m |) 1-β 4
.

By these estimates we can write |A n,m | ≍ I n,m + J n,m , where

I n,m ≍ |e n+j (γ n )| |e m (λ m )| |λ m | |λ m -γ n | |γ n | |λ m | m+i-1 k=0 λ m γ k n-1 k=0 γ k γ n =: |λ m | |λ m -γ n | e Θ(n,m)
and ,m) .

J n,m ≍ (log |λ m |) 1-β 4 (log |γ n |) 1-β 2 e ϕ(γn)-ϕ(λm) |λ m | |λ m -γ n | m+i-1 k=0 λ m γ k n-1 k=0 γ k γ n =: |λ m | |λ m -γ n | e θ(n
To estimate the coefficients I n,m and J n,m , we first write

K n,m = m+i-1 k=0 λ m γ k n-1 k=0 γ k γ n .
We next put u k := log |λ k | for every k ≥ 0. We have

log K n,m = (m + i)u m -n(u n + δ n ) - m+i-1 k=0 u k + n-1 k=0 u k - m+i-1 k=0 δ k + n-1 k=0 δ k = u m+i -u n 2 + βu β+1 n -n(u n + δ n ) -βu β+1 m+i -(m + i)u m + d β u 1-β n -u 1-β m+i - m+i-1 k=0 δ k + n-1 k=0 δ k .
Hence,

Θ(n, m) := log K n,m + log |e n+j (γ n )| -log e m (λ m ) + (u n + δ n ) -u m = u n -u m+i 2 + 1 2β(β + 1) + o(1) j 2 u 1-β n -i 2 u 1-β m+i + d β u 1-β n -u 1-β m+i - m+i-1 k=0 δ k + n k=0 δ k + 1 -β 4 log 1 + m 1 + n . Now if n ≤ m + i, then I n,m ≍ |λ m | |λ m -γ n | e Θ(n,m) ≍ e Θ(n,m)
and

Θ(n, m) = - 1 2 + o(1) (u m+i -u n ) - m+i-1 k=n+1 δ k . If n ≥ m + i, then I n,m ≍ |λ m | |λ m -γ n |
e Θ(n,m) ≍ e Θ(n,m)+um-un-δn and

Θ(n, m) + u m -u n -δ n = - 1 2 + o(1) (u n -u m+i ) + n-1 k=m+i δ k .
Hence,

I n,m ≍ exp - 1 2 + o(1) |u n -u m+i | ± n-1 k=m+i δ k .
Similarly, we have

θ(n, m) := log K n,m + ϕ(γ n ) -ϕ(λ m ) + 1 -β 4 log 1 + m (1 + n) 2 = u n -u m+i 2 + 1 2β(β + 1) + o(1) j 2 u 1-β n -i 2 u 1-β m+i + 1 -β 4 log 1 + m (1 + n) 2 + d β u 1-β n -u 1-β m+i - m+i-1 k=0 δ k + n k=0 δ k .
If n ≤ m + i, we have

J n,m ≍ |λ m | |λ m -γ n | e θ(n,m) ≍ e θ(n,m) , and 
θ(n, m) = - 1 2 + o(1) (u m+i -u n ) - m+i-1 k=n+1 δ k . If n ≥ m + i, then J n,m ≍ |λ m | |λ m -γ n | e θ(n,m) ≍ e θ(n,m)+um-un-δn and θ(n, m) + u m -u n -δ n = - 1 2 + o(1) (u n -u m+i ) + n-1 k=m+i δ k .
Hence,

J n,m ≍ exp - 1 2 + o(1) |u n -u m+i | ± n-1 k=m+i δ k . Consequently, |A n,m | ≍ I n,m + J n,m ≍ exp - 1 2 + o(1) |u n -u m+i | ± n-1 k=m+i δ k .
Recall that

∆ N := lim sup n 1 u n+N -u n n+M k=n+1 δ k < 1 2 .
This implies that for a very small ε (chosen in such a way that ∆ N + ε < 1/2) and for every n ≥ 0 we have

n+M k=n+1 δ k ≤ ∆ N + ε 2 (u n+N -u n ) .
Thus,

|A n,m | exp - 1 2 -∆ N + ε 2 + o(1) |u n -u m+i | . Since ∆ N < 1 2 , the matrix A = (A n,m
) defines a bounded operator on ℓ 2 and, hence, K Γ is a Riesz basis for F 2 ϕ .

"=⇒" Proof of (1). Let ϕ(r

) = ϕ β (r) = log + r 1+β , 0 < β ≤ 1. If K Γ is a Riesz basis for F 2 ϕ β
then Γ is an interpolating sequence for F 2 ϕ β and hence for F 2 ϕ 1 . By [5, Corollary 2.3] Γ is d-separated.

Proof of [START_REF] Avdonin | Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems[END_REF]. Let Γ = {γ n } be a sequence of complex numbers such that K Γ is a Riesz basis for F 2 ϕ . Then for every γ ∈ Γ there exists a unique function f γ ∈ F 2 ϕ that satisfies the interpolation problem :

f γ , k γ = 1 and f γ , k γ = 0, γ ′ ∈ Γ \ {γ}.
Consequently, Γ \ {γ} is a subset of the zero set of the function f γ . Since K Γ is complete, Γ is a uniqueness set, then Γ \ {γ} is exactly the zero set of f γ . By Hadamard's factorization theorem we have

f γ (z) = c G Γ (z) G ′ Γ (γ)(z-γ) , for some constant c ∈ C. Since f γ , k γ = 1, we get c = k γ ϕ,2 . Therefore, f γ (z) = k γ ϕ,2 G Γ (z) G ′ Γ (γ)(z -γ) , z ∈ C. Furthermore f γ ϕ,2 ≍ 1. Hence, |f γ (λ m )| ≤ f γ ϕ,2 k λm ≍ |e m (λ m )| ,
for every λ m ∈ Λ.

Suppose now that the sequence (δ n /(1+n) 1 β -1 ) is unbounded. Without loss of generality we assume the existence of a subsequence δ n k /(1+n k ) 1 β -1 which tends to +∞ (the case of convergence to -∞ is similar). Then, for every k there exists m k such that |n k -m k | → ∞ and γ n k is close to λ m k . We obtain

f γn k (λ m k ) k λm k ϕ,2 ≍ |e m k (λ m k )| . (3.1)
On the other hand, we have

k γn k ϕ,2 ≥ |e m k (γ n k )| and |G Γ (λ m k )| ≍ |λ m k -γ n k | |λ m k | n k -1 j=0 λ m k γ j , |G ′ Γ (γ n k )| ≍ 1 |γ n k | n k -1 j=0 γ n k γ j .
For the sake of brevity, we denote n := n k and m := m k . Identity (3.1) becomes

|e m (λ m )| |f γn (λ m )| |γ n | |λ m | |e m (γ n )| n-1 j=0 λ m γ j γ j γ n .
Therefore,

e m (λ m ) e m (γ n ) λ m γ n n-1 ⇐⇒ λ m γ n n-m-1 1. (3.2) 
Note that we can suppose

|λ m | ≤ |γ n | and, hence, m = n + δ ′ n + δ n,m , where (δ ′ n ) is a se- quence tending to infinity δ ′ n = Const(β)δ n /(1 + n) 1 β -1 and (δ n,m
) is a bounded negative sequence such that δ n,m ≤ -1 (otherwise we replace m by m -m ′ for a suitable integer m ′ ). Thus,

log λ m γ n = u m -(u n + δ n ) = b β (1 + β)(u n + δ n ) β + δ n,m 1 β -(u n + δ n ) = 1 β(β + 1) + o(1) δ n,m (u n + δ n ) 1-β . Since n -m -1 = n + δ ′ n -m -δ ′ n -1 = -δ n,m -δ n -1, (3.2) becomes 1 -(δ n + δ n,m + 1) 1 β(β + 1) + o(1) δ n,m (u n + δ n ) 1-β ≥ c β δ n u 1-β n ,
which is impossible.

Proof of (3). Recall first that the matrix of the coefficients

|A n,m | = G Γ (λ m ) G ′ Γ (γ n )(λ m -γ n ) k γn ϕ,2 k λm ϕ,2
defines a bounded operator on ℓ 2 . From the proof of the first part we have

|A n,m | exp - |u m+i -u n | 2 + c β u 1-β n -u 1-β m+i ∓ m+i-1 k=n+1 δ k .
Assume that for every N ≥ 1, we have

∆ N := lim sup n 1 u n+N -u n n+N k=n+1 δ k = 1 2 + ε N ,
for a nonnegative sequence (ε N ). For every N ≥ 1 there exists an integer n N (sufficiently large) such that

n N +N k=n N +1 δ k ≥ u n N +N -u n N 2 + ε N u n N +N -u n N 2 .
• Assume that there exists a subsequence (N l ) such that

n l +N l k=n l +1 δ k > 0 (n l is the integer n N l ). We get |A n l +N l ,n l | exp - |u n l -u n l +N l | 2 + c β u 1-β n l +N l -u 1-β n l + n l +N l k=n l +1 δ k exp c β u 1-β n l +N l -u 1-β n l .
This implies that (A n l +N l ,n l ) is unbounded (0 < β < 1) and, hence, the matrix (A n,m ) cannot represent a bounded operator on ℓ 2 .

• There exists N 0 ≥ 1 such that for every N ≥ N 0 we have

n l +N l k=n l +1
δ k < 0. For every n we have

|A n,n+N | exp - u n+N -u n 2 -c β u 1-β n+N -u 1-β n - n+N k=n+1 δ k .
If (ε N ) contains a subsequence (ε N ) N ∈J which is bounded below by some ε > 0, where J is an infinite subset of N. Then for N ∈ J, we have

|A n N ,n N +N | exp -c β u 1-β n N +N -u 1-β n N + ε u n N +N -u n N 2 .
This ensures that (A n N ,n N +N ) tends to infinity. Therefore, the matrix A cannot define a bounded operator on ℓ 2 . Suppose now that (ε N ) converges to zero. Simple computations " =⇒ " Suppose now that Γ ∪ {γ * } is a complete interpolating set for F ∞ ϕ . To prove that K Γ is a Riesz basis for F 2 ϕ , it suffices to verify that Γ satisfies conditions (1)-( 3) of Theorem 1.1. First Γ is d-separated because every interpolating sequence for F ∞ ϕ β is also an interpolating sequence for F ∞ ϕ 1 . Furthermore, remark that

|B n,m | ≍ e ϕ(γn)-ϕ(λm) |λ m | |γ n | G Γ (λ m ) G ′ Γ (γ n )(λ m -γ n ) (log γ n ) 1-β 2 (log λ n ) 1-β 4
|A n,m |.

Arguing as in the proof of Theorem 1.1, if (δ n ) contains a subsequence (δ n k ) such that δ n k /(1 + n k ) 1 β -1 is unbounded, then (A n,m ) is unbounded and, consequently, (B n,m ) is unbounded too. Thus (2) holds. Suppose now that ∆ N = 1 2 + ε N , for a nonnegative sequence (ε N ). Again as in the proof of Theorem 1.1, the sequence |A n k +N k ,n k |+|A n k ,n k +N k | is unbounded and, hence, (B n,m ) is unbounded too. This proves (3) and completes the proof.

Final remarks

The following remark shows that the superior limit in condition (3) in Theorem 1.1 can be replaced by a supremum. This shows that in the case β = 1, Theorem 1.1 and [5, Theorem 1.1] are equivalent. Consequently, K Γ is also a Riesz basis for F 2 ϕ .

Lemma 2 . 4 . 1 β

 241 Let Γ = {γ n } n be a sequence defined in(2.4). We write γ n = λ n e δn e iθn , where δ n , θ n ∈ R, and suppose that|γ n | ≤ |γ n+1 | and |δ n | = O (1 + n) -1 .The infinite product G Γ converges on every compact set of C and for every small ε > 0 there exists a positive constant C such that 1 C

. 5 )

 5 Now for every N ∈ N there exist two positive integers p and r such that m = pN + r and 0 r < N. Set u k := log |λ k |. We have

where F Γ = ( 1 - 1 e

 11 z/γ * )G Γ . Let us verify that L v ∈ F ∞ ϕ . According to Lemma 2.7, Λ ∪ {λ * } is a complete interpolating set for F ∞ ϕ and consequentlyL v ϕ,∞ ≍ sup m≥--ϕ(λm) n≥0 v n F Γ (λ m ) F ′ Γ (γ n )(λ m -γ n ) = sup m≥-1 n≥0v n e -ϕ(γn) B n,m , where|B n,m | = e ϕ(γn)-ϕ(λm) F Γ (λ m ) F ′ Γ (γ n )(λ m -γ n ) ≍ e ϕ(γn)-ϕ(λm) |λ m | |γ n | G Γ (λ m ) G ′ Γ (γ n )(λ m -γ n ) ≍ |A n,m | e o(1)|um-un| , and u n = log |λ n |. The estimates on the matrix A = (A n,m ) imply that L v belongs to F ∞ ϕ .

Remark 5 . 1 .

 51 Let (δ n ) be a sequence of real numbers such that δ n /(1 + n)

1 β - 1 1 2β 1 N 1 N 1 β

 111111 ∈ ℓ ∞ . Let N be a positive integer and δ = Γ = {γ n } be a d-separated sequence of complex numbers ordered in such a way that |γ n | ≤ |γ n+1 |. Set γ n = λ n e δn e iθn . Suppose that∆ N := lim sup n Let ε ∈ (0, δ -∆ N ). There exists m ≥ 0 such that sup n≥m ≤ ∆ N + ε < δ.Thus, K Γ is a Riesz basis for F 2 ϕ , whereΓ := e (n+1 1+β ): 0 ≤ n ≤ m -1 ∪ {γ n ∈ Γ : n ≥ m} .

  Hence, D d (z, δ) is comparable to D(z, c δ |z|) with a suitable constant c δ depending on δ. Thus Σ is d-separated if and only if there exists c > 0 such that the Euclidean disks

D(σ, c|σ|), σ ∈ Σ, are disjoint. Our first main result in this paper is the following Theorem 1.1. Let ϕ(r) = log + r β+1 where 0 < β < 1, and let Γ = {γ n : n ≥ 0} be a sequence of complex numbers such that |γ n | |γ n+1 |. We write γ n = exp 1+n 1+β 1 β e δn e iθn , for every n ≥ 0, where (δ n ) n and (θ n ) are real sequences. Then K Γ = {k γ } γ∈Γ is a Riesz basis for F 2 ϕ if and only if the following three conditions hold:
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Choose

Thus (A n N ,n N +N ) N is unbounded and, hence, the matrix A = (A n,m ) cannot define a bounded operator on ℓ 2 . This completes the proof.

4. Proof of Theorem 1.2

" ⇐= " Suppose that K Γ is a Riesz basis for F 2 ϕ . Then Γ satisfies conditions (1), ( 2) and (3) of Theorem 1.1.

First, the sequence Γ = Γ ∪ {γ * } is a uniqueness set for F ∞ ϕ . Indeed, if f is a function from F ∞ ϕ that vanishes on Γ, then f = (1 -z/γ * )G Γ h, for an entire function h. Our estimates of G Γ imply that

Since ∆ N < 1/2, the function h must be identically zero.

Let us prove that Γ = {γ n } n≥-1 is an interpolating sequence for F ∞ ϕ , where γ -1 = γ * . For this, let v = (v n ) be a sequence such that v ϕ,∞, Γ < ∞ and consider the entire function