
HAL Id: hal-01918516
https://hal.science/hal-01918516v2

Submitted on 24 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Riesz bases of reproducing kernels in small Fock spaces
Karim Kellay, Youssef Omari

To cite this version:
Karim Kellay, Youssef Omari. Riesz bases of reproducing kernels in small Fock spaces. Journal of
Fourier Analysis and Applications, 2020, 26 (1). �hal-01918516v2�

https://hal.science/hal-01918516v2
https://hal.archives-ouvertes.fr


RIESZ BASES OF REPRODUCING KERNELS IN SMALL FOCK

SPACES

K. KELLAY & Y. OMARI

Abstract. We give a complete characterization of Riesz bases of normalized reproducing
kernels in the small Fock spaces F2

ϕ, the spaces of entire functions f such that fe−ϕ ∈
L2(C), where ϕ(z) = (log+ |z|)β+1, 0 < β ≤ 1. The first results in this direction are due
to Borichev-Lyubarskii who showed that ϕ with β = 1 is the largest weight for which the
corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases
were characterized by Baranov-Dumont-Hartman-Kellay in the case when β = 1. The
present paper answers a question in Baranov et al. by extending their results for all
parameters β ∈ (0, 1). Our results are analogous to those obtained for the case β = 1 and
those proved for Riesz bases of complex exponentials for the Paley-Wiener spaces. We
also obtain a description of complete interpolating sequences in small Fock spaces with
corresponding uniform norm.

1. Introduction and statement of main results

For a subharmonic function ϕ tending to infinity when |z| → ∞, define the weighted
Fock spaces Fp

ϕ, p = 2,∞, the spaces of all entire functions f for which fe−ϕ belongs to
Lp(C). Seip and Wallstén [19, 20] characterized interpolating and sampling sequences in
these spaces when ϕ(z) = |z|2. They showed that there are no sequences which are simul-
taneously interpolating and sampling, and hence there are no Riesz bases of reproducing
kernels in this case. However, the situation changes in small Fock spaces when the weight
increases slowly. In [8, Theorem 2.8, Theorem 2.10], Borichev and Lyubarskii proved that

the spaces F2
ϕ with ϕ(z) = ϕβ(z) =

(
log+ |z|

)β+1
, 0 < β ≤ 1, possess Riesz bases of nor-

malized reproducing kernels at real points. Another proof was given by Baranov, Belov
and Borichev in [3, Theorem 1.2] for the case where ϕ(z) = O(log+ |z|)2 with some reg-
ularity conditions. In this case, the Fock spaces F2

ϕ can be viewed as de Branges spaces

[3, Theorem 1.2], see also [4]. A more general approach based on the boundedness and
invertibility of a discrete Hilbert transform was given by Belov, Mengestie and Seip in [6].
In a recent work, Baranov, Dumond, Hartmann and Kellay [5] gave a characterization of
complete interpolating sequences (or Riesz bases) in F2

ϕ, when ϕ(z) = (log+ |z|)2, in the
spirit of Ingham-Kadets 1/4 theorem for the Paley-Wiener space (see [17] for the case of
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Fp
ϕ, 1 ≤ p < ∞). If the weight grows more rapidly than (log+ |z|)2, then the associated

Fock type space has no Riesz bases of (normalized) reproducing kernels, see [3, 7, 8, 18, 20]
and the references therein. Also, for the case when the corresponding Riesz measure of
the weight ϕ is doubling, Marco, Massaneda and Ortega-Cerdà in [13] proved that F2

ϕ

possesses no Riesz bases of normalized reproducing kernels. Finally, it follows from [10]
that there is no criterion for the existence of Riesz bases in a Fock-type space F2

ϕ consisting
of reproducing kernels in terms of the growth of the weight function ϕ only.

The main question we deal with in this paper was posed in [5]. One looks for a char-
acterization of Riesz bases of normalized reproducing kernels for F2

ϕβ
, where 0 < β < 1.

Indeed, we obtain a complete description of such bases. Our results are analogous to the
well known Avdonin theorem [1] established for Riesz bases of complex exponentials in
the Paley-Wiener spaces (see [22, Theorem 14, p. 178] and [2, p. 102] for more general
statement) and to those obtained for F2

ϕ1
(see [5, Theorem 1.1]). We also give a charac-

terization of complete interpolating sequences in F∞
ϕβ

for 0 < β < 1. The case when β = 1

was studied in [5, Theorem 1.2].

1.1. Description of Riesz bases of F2
ϕ. Let ϕ be an increasing function defined on

[0,∞) tending to infinity. We extend ϕ into the whole complex plane C by ϕ(z) = ϕ(|z|)
and we define the corresponding Fock type space

F2
ϕ :=

{
f ∈ Hol(C) : ‖f‖2ϕ,2 :=

∫

C

|f(z)|2e−2ϕ(z)dm(z) <∞
}
,

here m stands for the area Lebesgue measure. Since point evaluations are bounded linear
functionals on F2

ϕ, by the representation Riesz Theorem the space F2
ϕ endowed with the

inner product

〈f, g〉ϕ :=

∫

C

f(z)g(z)e−2ϕ(z) dm(z), f, g ∈ F2
ϕ,

is a reproducing kernel Hilbert space (RKHS). Let kz be its reproducing kernel at z ∈ C,
that is

f(z) = 〈f, kz〉ϕ, f ∈ F2
ϕ.

We denote by kz = kz/‖kz‖ϕ,2 the normalized reproducing kernel of F2
ϕ. Let Γ be a

sequence of complex numbers. A system of normalized reproducing kernels KΓ = {kγ}γ∈Γ
is said to be a Riesz basis for F2

ϕ if KΓ is complete and if for some constant C ≥ 1 we have

1

C

∑

γ∈Γ

|aγ|2 ≤
∥∥∥∥∥
∑

γ∈Γ

aγkγ

∥∥∥∥∥

2

ϕ,2

≤ C
∑

γ∈Γ

|aγ|2,

for each finite sequence {aγ}. This means that Γ is a complete interpolating sequence for
F2
ϕ. In an equivalent way, the operator

TΓ : F2
ϕ −→ ℓ2(Γ)
f 7−→ (〈f, kγ〉)γ∈Γ
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is bounded and invertible from F2
ϕ to ℓ2(Γ).

We next set

d(z, w) =
|z − w|

1 + min(|z|, |w|) , z, w ∈ C.

A set Σ ⊂ C is said to be d−separated if there is dΣ > 0 such that

inf {d(σ, σ∗) : σ, σ∗ ∈ Σ, σ 6= σ∗} ≥ dΣ.

We denote by D(z, r) the Euclidean disk of radius r centered at z. For δ < 1 and 0 6= z ∈ C

the ball corresponding to the distance d is given by

Dd(z, δ) := {w ∈ C : d(z, w) < δ}.
Hence, Dd(z, δ) is comparable to D(z, cδ|z|) with a suitable constant cδ depending on δ.
Thus Σ is d−separated if and only if there exists c > 0 such that the Euclidean disks
D(σ, c|σ|), σ ∈ Σ, are disjoint. Our first main result in this paper is the following

Theorem 1.1. Let ϕ(r) =
(
log+ r

)β+1
where 0 < β < 1, and let Γ = {γn : n ≥ 0} be a

sequence of complex numbers such that |γn| 6 |γn+1|. We write γn = exp
(

1+n
1+β

) 1
β

eδneiθn,

for every n ≥ 0, where (δn)n and (θn) are real sequences. Then KΓ = {kγ}γ∈Γ is a Riesz

basis for F2
ϕ if and only if the following three conditions hold:

(1) Γ is d−separated,

(2)
(
δn/(1 + n)

1
β
−1
)

n≥0
is a bounded sequence,

(3) there exists N > 1 such that

lim sup
n

1

(1 + n +N)
1
β − (1 + n)

1
β

∣∣∣
n+N∑

k=n+1

δk

∣∣∣ <
1

2(1 + β)
1
β

. (1.1)

1.2. Complete interpolating sequences in uniform Fock spaces F∞
ϕ . In this sub-

section we consider the uniform Fock type space, associated with ϕ, given as follows

F∞
ϕ :=

{
f ∈ Hol(C) : ‖f‖ϕ,∞ := sup

z∈C
|f(z)|e−ϕ(z) <∞

}
.

F∞
ϕ endowed with the norm ‖ . ‖ϕ,∞ is clearly a Banach space. Let Γ = {γn} be a sequence

in C. Γ is said to be sampling for F∞
ϕ whenever there exists C ≥ 1 such that

‖f‖ϕ,∞ ≤ C‖f‖ϕ,∞,Γ,

for every f ∈ F∞
ϕ , where

‖f‖ϕ,∞,Γ := sup
γ∈Γ

|f(γ)|e−ϕ(γ).

Γ is called an interpolating set for F∞
ϕ if for every sequence v = (vγ)γ∈Γ such that

‖v‖ϕ,∞,Γ < ∞ there exists f ∈ F∞
ϕ that satisfies f(γ) = vγ, for every γ ∈ Γ. Finally,

Γ is said to be a complete interpolating sequence for F∞
ϕ if Γ is simultaneously a sampling

and an interpolating set for F∞
ϕ .
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The following result describes complete interpolating sequences for F∞
ϕ , the case β = 1

was obtained in [5].

Theorem 1.2. Let ϕ(r) =
(
log+ r

)β+1
where 0 < β < 1. Let Γ be a sequence of complex

numbers and let γ∗ ∈ C \ Γ. Then Γ ∪ {γ∗} is a complete interpolating set for F∞
ϕ if and

only if KΓ is a Riesz basis for F2
ϕ.

1.3. Remarks. Several remarks are in order before we turn to the proofs of our theorems:

1. Complete interpolating sequences for Fp
ϕ, p = 2,∞ are characterized by comparing

them to the sequence

Λ =

{
λn := exp

(1 + n

1 + β

) 1
β

eiθn , θn ∈ R : n ≥ 0

}
, (1.2)

which is a complete interpolating sequence for F2
ϕ and Λ∪{λ∗} is a complete interpolating

sequence for F∞
ϕ where λ∗ ∈ C \Λ (for p = 2 see [3, Theorem 1.2] and Lemma 2.6 and for

the case p = ∞ see Lemma 2.7 ).

2. The diagonal asymptotic estimates of the reproducing kernel play an important role in

the study of Riesz bases. Let ρ(z) := (∆ϕ(z))−1/2 = |z| (log |z|)
1−β

2 , as stated in Corollary
2.3 the kernel admits the following estimates

e2ϕ(z)

ρ(z)2
. ‖kz‖2ϕ,2 .

e2ϕ(z)

|z|ρ(z) , |z| > 1.

Furthermore the upper estimate is attained on a subset of z (see Lemma 2.2 for the precise
diagonal asymptotic estimates).

3. The case β = 1 was treated in [5, Theorem 1.1] under conditions (1), (2) and under
the hypothesis that there exists N > 1 such that

sup
n

1

N

∣∣∣
n+N∑

k=n+1

δk

∣∣∣ <
1

4
. (1.3)

The family KΛ = {kλ}λ∈Λ (associated with β = 1) is a Riesz basis for F2
ϕ1

. Condition
(1.1) may appear different to (1.3) in the case β = 1; however, these two conditions are
equivalent for the problem studied here (see Remark 5.1).

4. Condition (1.1) can be written as

∆N := lim sup
n

1

log |λn+N | − log |λn|
∣∣∣
n+N∑

k=n+1

δk

∣∣∣ <
1

2
. (1.4)
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For N = 1, condition (1.1) is equivalent to

sup
n≥1

∣∣ log |γn| − log |λn|
∣∣

n
1
β
−1

= sup
n≥1

|δn|
n

1
β
−1

<
1

2β(1 + β)
1
β

, (1.5)

(see Remark 5.1). Conditions (1.4) and (1.5) look similar to those used in some related
results. We mention here the well known 1/4 Kadets-Ingham’s theorem [11] on Riesz bases
of exponentials in the Paley-Wiener spaces PW 2

α, and the results by Marzo and Seip [14]
for spaces of polynomials. For fixed N , (1.4) looks similar to Avdonin’s condition [1]. It is
interesting to note that conditions (1)-(3) describe completely Riesz bases of reproducing
kernels in F2

ϕ; on the contrary, in the Paley-Wiener spaces, these conditions are just suffi-
cient.

5. We notice again that our spaces possess Riesz bases of normalized reproducing kernels
at real points, and hence they can be viewed as de Branges spaces [4, 3]. Using the bound-
edness and invertibility results on the discrete Hilbert transform on lacunary sequences,
Belov, Mengestie and Seip gave another characterization of Riesz bases, where our summa-
bility condition (1.1) corresponds to a Muckenhoupt-type condition; for further details we
refer to [6, Theorem 1.1]. Our approach consists of using Bari’s theorem on Riesz bases in
Hilbert spaces, as in the proof of [5, Theorem 1.1].

The plan of our paper is as following. In the next section we state diagonal asymptotic
estimates on the reproducing kernel. We then show that Λ and Λ ∪ {λ∗} are complete
interpolating sequences for F2

ϕ and F∞
ϕ , respectively. Furthermore, we deal with the sepa-

ration condition. Section 3 is devoted to proving Theorem 1.1. The proof of Theorem 1.2
is presented in Section 4. We end our paper by some remarks in the last section.

Throughout the paper, we use the following notations:

• A . B means that there is an absolute constant C such that A ≤ CB.
• A ≍ B if both A . B and B . A hold.

Acknowledgement. The authors are grateful to A. Borichev, O. El-Fallah, Yu. Lyubarskii
and J. Ortega-Cerdà for helpful discussions. We also would like to thank the referees for
their detailed comments and suggestions.

2. Key lemmas and preliminary results

In this section we prove some preliminary results and some key lemmas. First, we
establish estimates on the reproducing kernel at the diagonal also get necessary estimates on
certain infinite products and also preliminary results concerning the separation condition.

Throughout the rest of this paper we denote ϕ(r) = ϕβ(r) =
(
log+ r

)β+1
, where 0 < β < 1.

2.1. Estimates on the norm of the reproducing kernel. We begin by the following
lemma which was proved in [3, Lemma 3.1] and which will be used repeatedly throughout
the paper.
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Lemma 2.1. For every nonnegative integer n we have

‖zn‖2ϕ,2 ≍
(1 + n

1 + β

) 1−β

2β

exp
(
2β

(1 + n

1 + β

) 1+β

β
)
.

Next we produce an asymptotic estimate on the reproducing kernel kz of F2
ϕ on the

diagonal. Note that such estimate was obtained for the points λ ∈ Λ by Baranov, Belov and
Borichev in [3, Lemma 3.2]. They proved the estimate directly by using Hardy’s convexity
theorem. Here we use Laplace’s method to deal with the rest of complex numbers z ∈ C.
We denote by [x] the integer part of a real x.

Lemma 2.2. Let |z| = es, nz = [(1 + β)sβ]. Set gs(t) = st − β
(

t
1+β

) 1+β

β . Let ϕ̃(z) =

max(gs(nz), gs(nz + 1)). We have

‖kz‖2ϕ,2 ≍
e2ϕ̃(z)

|z|ρ(z) +
e2ϕ(z)

ρ2(z)
, |z| > 1,

where ρ(z) := (∆ϕ(z))−1/2 = |z| (log |z|)
1−β

2 .

Proof. Let |z| = es. Note that g′s(t) = 0 for t = (1 + β)sβ and ϕ̃(z) ≤ ϕ(z). Since
‖kz‖2ϕ,2 =

∑
n≥0 |z|2n/‖zn‖2ϕ,2, by Lemma 2.1 we have

e2s‖kes‖2ϕ,2 ≍
∑

n≥1

e2gs(n)

(1 + n)
1−β

2β

.

∫ nz

0

e2gs(t)

(1 + t)
1−β

2β

dt+
e2gs(nz)

(1 + nz)
1−β

2β

+
e2gs(nz+1)

(2 + nz)
1−β

2β

+

∫ ∞

nz+1

e2gs(t)

(1 + t)
1−β

2β

dt

.
e2ϕ̃(z)

s
1−β

2

+

∫ ∞

0

e2s
1+β

[
x−β

(
x

1+β

) 1+β
β
]

s
1−β

2 (1 + x)
1−β

2β

sβdx :=
e2ϕ̃(z)

s
1−β

2

+
sβ

s
1−β

2

∫ ∞

0

e−2s1+βψ(x)f(x)dx,

where ψ(x) = β
(

x
1+β

) 1+β

β − x and f(x) = 1/(1 + x)
1−β

2β . We have ψ′(x) =
(

x
1+β

) 1
β − 1. Let

x0 = 1 + β. Then ψ′(x0) = 0 and ψ(x0) = −1. Since ψ′′(x) = x
1
β
−1

β(1+β)
1
β

> 0, x ≥ 1, we get

by Laplace’s method [9]

∫ ∞

0

e−Sψ(x)f(x)dx ∼
√

2π

Sψ′′(x0)
f(x0)e

−Sψ(x0), S → +∞.

For S = 2s1+β → +∞, we get

‖kz‖2ϕ,2 = ‖kes‖2ϕ,2 .
e2ϕ̃(z)

e2ss
1−β

2

+
e2s

1+β

e2ss1−β
=

e2ϕ̃(z)

|z|2(log |z|) 1−β

2

+
e2ϕ(z)

|z|2(log |z|)1−β .
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On the other hand, using Laplace’s method again, we obtain

I :=

∫ 1+β

0

e2s
1+β

[
x−β

(
x

1+β

) 1+β
β
]
dx ∼

√
2π

2s1+βψ′′(x0)
e2s

1+β

=

√
πβ(1 + β)

s1+β
e2s

1+β

.

Also, we have

J :=

∫ 1+β

1+β−2/sβ
e2s

1+β

[
x−β

(
x

1+β

) 1+β
β
]
dx

=

∫ 2/sβ

0

exp
(
2s1+β

[
(1 + β − u)− β

(
1− u

1 + β

) 1+β

β
])

du

=

∫ 2/sβ

0

exp
(
2s1+β

[
1− 1

2β(β + 1)
u2
])

du

≤ e2s
1+β

∫ ∞

0

e−
s1+βu2

β(β+1) du

=
1

2

√
β(β + 1)π

s1+β
e2s

1+β ∼ 1

2
I.

So, we get

e2s‖kes‖2ϕ,2 &

∫ nz−1

0

e2gs(t)

(1 + t)
1−β

2β

dt +
e2gs(nz)

(1 + nz)
1−β

2β

+
e2gs(nz+1)

(2 + nz)
1−β

2β

&
e2ϕ̃(z)

s
1−β

2

+
sβ

s
1−β

2

∫ 1+β−2/sβ

0

e2s
1+β

[
x−β

(
x

1+β

) 1+β
β
]

(1 + x)
1−β

2β

dx

=
e2ϕ̃(z)

s
1−β

2

+
sβ

s
1−β

2

(
I − J

)

≍ e2ϕ̃(z)

s
1−β

2

+
sβ

s
1−β

2

e2s
1+β

√
s1+β

.

Therefore,

‖kz‖2ϕ,2 &
e2ϕ̃(z)

|z|2(log |z|) 1−β

2

+
e2ϕ(z)

|z|2(log |z|)1−β , |z| > 1.

This completes the proof.
�

We have the following corollary, with identity (2.2) obtained already in [3, Lemma 3.2]

Corollary 2.3. We have
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e2ϕ(z)

ρ(z)2
. ‖kz‖2ϕ,2 .

e2ϕ(z)

|z|ρ(z) , |z| > 1. (2.1)

Furthermore, for every λn ∈ Λ, where Λ is the sequence given in (1.2), we have

‖kλn‖2ϕ,2 ≍ e2ϕ(λn)

|λn|ρ(λn)
≍ |en(λn)|2, (2.2)

where en(z) = zn/‖zn‖ϕ,2. Also, if σn = exp
(
n+1/2
1+β

) 1
β

, n ≥ 2, then

‖kσn‖2ϕ,2 ≍ e2ϕ(σn)

ρ(σn)2
. (2.3)

Proof. Estimate (2.1) follows directly from the previous lemma. (2.2) was proved in [3,
Lemma 3.2]. We will prove (2.3). Following the notations of Lemma 2.2, let |z| = es and

set nz := [(1 + β)sβ], gs(t) = st− β
(

t
1+β

) β+1
β

. By Lemma 2.2 we have

‖kz‖2ϕ,2 ≍ 1

|z|2(log |z|) 1−β

2

[
e2max{gs(nz),gs(nz+1)} + e2ϕ(z)−2 1−β

4
log log |z|

]
.

We write nz = (1 + β)sβ + δz, for some δz ∈ (−1, 0]. Simple calculations show that for
j ∈ {0, 1} we have

gs(nz + j)− ϕ(z) +
1− β

4
log s = s

(
(1 + β)sβ + δz + j

)

− β

(
(1 + β)sβ + δz + j

1 + β

)β+1
β

− sβ+1 +
1− β

4
log s

=
1− β

4
log s− 1 + o(1)

2β(1 + β)
(δz + j)2s1−β −→

|z|→∞
−∞,

if and only if
β(1− β2)

2 + o(1)

log s

s1−β
= o

(
(δz + j)2

)
, |z| → ∞.

Now, if z = σn, then δ2z = (δz + 1)2 = 1
4

and hence the latter estimate holds. Thus (2.3)
follows immediately. �

Remark. For regular radial weights satisfying the estimate (log r)2 = O(ϕ(r)), when
r → ∞, the reproducing kernel of F2

ϕ possesses the property kz(z) ≍ ∆ϕ(z)e2ϕ(z) (see

[3, 7, 8]). This estimate remains valid for the kernel of F2
ϕ when the associated Riesz

measure of the weight ϕ is doubling [13, Lemma 21]. Estimate (2.2) proves that the
case β < 1 is quite different from the case when β = 1. Indeed, for β = 1 the repro-
ducing kernel admits the estimate ‖kz‖2ϕ1,2

≍ ∆ϕ1(z)e
2ϕ1(z), for every z ∈ C. However,

in (2.2) we have for every λ ∈ Λ that ‖kλ‖2ϕβ ,2
≍ e2ϕβ(λ)/

(
|λ|2

(
log(λ)

) 1−β

2
)
, and hence
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∆ϕβ(λ)e
2ϕβ(λ) = o

(
‖kλ‖2ϕβ ,2

)
, whenever 0 < β < 1. This could explain the difference in

the results obtained about Riesz bases of normalized reproducing kernels in the situation
β = 1 and 0 < β < 1.

2.2. Complete interpolating sequences in Fp
ϕ, p = 2,∞. With a given sequence Γ of

complex numbers, we associate the infinite product

GΓ(z) =
∏

γ∈Γ

(
1− z

γ

)
, z ∈ C,

whenever it converges. In what follows, we denote by dist(z,Γ) the Euclidean distance
between z and the sequence Γ.

The following lemma provides estimates on the infinite product GΓ associated with a
sequence Γ defined by

Γ :=

{
γn := exp

(1 + n

1 + β

) 1
β

eδneiθn , θn ∈ R : n > 0

}
. (2.4)

Recall that

∆N := lim sup
n→∞

1

log |λn+N | − log |λn|
∣∣∣
n+N∑

k=n+1

δk

∣∣∣.

Lemma 2.4. Let Γ = {γn}n be a sequence defined in (2.4). We write γn = λne
δneiθn,

where δn, θn ∈ R, and suppose that |γn| ≤ |γn+1| and |δn| = O
(
(1 + n)

1
β
−1
)
. The infinite

product GΓ converges on every compact set of C and for every small ε > 0 there exists a

positive constant C such that

1

C

dist(z,Γ)

(1 + |z|) 3
2
+∆N+ε

≤ |GΓ(z)| e−ϕ(z) ≤ C
dist(z,Γ)

(1 + |z|) 3
2
−∆N−ε

, z ∈ C.

Proof. Let z ∈ C with |z| = et = exp
(

s
1+β

) 1
β . Let also m be the integer such that

|γm−1| ≤ |z| < |γm| and suppose that dist(z,Γ) = |z − γm−1|. Then

log |GΓ(z)| =
∑

06n<m−1

log

∣∣∣∣1−
z

γn

∣∣∣∣+ log

∣∣∣∣1−
z

γm−1

∣∣∣∣+O(1)

=

m−1∑

n=0

log

∣∣∣∣
z

γn

∣∣∣∣+ log dist(z,Γ)− t +O(1)

= mt−
m∑

n=1

(
k

1 + β

) 1
β

−
m−1∑

n=1

δk + log dist(z,Γ)− t+O(1), t→ ∞.

Furthermore, for every α 6= −1 we have
m∑

k=1

kα =
mα+1

α+ 1
+
mα

2
(1 + o(1)) . (2.5)
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Now for every N ∈ N there exist two positive integers p and r such that m = pN + r
and 0 6 r < N . Set uk := log |λk|. We have

∣∣∣∣∣

m∑

k=1

δk

∣∣∣∣∣ 6

p−1∑

j=1

∣∣∣∣∣

N∑

k=1

δjN+k

∣∣∣∣∣+
∣∣∣∣∣

pN+r∑

k=pN+1

δk

∣∣∣∣∣

6
(
∆N +

ε

2

) p−1∑

j=0

(ujN+N − ujN) +O(m
1
β
−1)

6
(
∆N +

ε

2

)
t+ o(t), t→ ∞.

Consequently,

log |GΓ(z)| >
6 mt− β

(
m

1 + β

) 1
β
+1

−
(
3

2
∓∆N ∓ ε

2

)(
m

1 + β

) 1
β

+ log dist(z,Γ) + o(t)

>
6 tβ+1 −

(
3

2
∓∆N ∓ ε

2

)
t+ log dist(z,Γ) + o(t).

Finally, there exist two positive numbers A and B depending on ε such that

A
dist(z,Λ)

(1 + |z|) 3
2
+∆N+ε

≤ |GΓ(z)| e−ϕ(z) ≤ B
dist(z,Λ)

(1 + |z|) 3
2
−∆N−ε

, z ∈ C.

�

We need the following standard ingredient, which we single out as a lemma.

Lemma 2.5. Let Γ be a sequence defined as in (2.4). We have
∫

C

dist(z,Γ)2

(1 + |z|)3+α dm(z) <∞ ⇐⇒ α > 1.

Proof. Indeed, for every 1
2
(|γn−1| + |γn|) 6 r 6 1

2
(|γn| + |γn+1|), we have dist(reiθ,Γ) ≍

|reiθ − γn|. So, we get
∫

C

dist(z,Γ)2

(1 + |z|)3+αdm(z) ≍
∑

n>0

∫ 1
2
(|γn|+|γn+1|)

1
2
(|γn−1|+|γn|)

∫ 2π

0

|reiθ − γn|2
(1 + r)3+α

rdθdr ≍
∑

n>0

1

|γn|α−1
.

Therefore, the last sum is finite if and only if α > 1.
�

Next we extend a result of Borichev and Lyubarskii [8, Theorem 2.8]. They proved that

{kλ̃n}n≥0 is a Riesz basis for F2
ϕ where λ̃0 = 0, |λ̃n| = exp [(wn+1 − wn−1)/4] and

wn := log ‖zn‖2 = c(n+ 1)1+
1
β +O(logn).

Their proof was based on Bari’s theorem (see [15, section A.5.7.1]). Using the estimate
on the moments ‖zn‖ϕ,2 given in Lemma 2.1, we produce a family of sequences of similar
kind. These sequences could be viewed as a reference family of complete interpolating
sequences for F2

ϕ and will play a crucial tool in the proof of the main theorems. A proof
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of this lemma was given by Baranov-Belov-Borichev in [3, Theorem 1.2] using the results
of Belov-Mengestie-Seip [6]. However, for the sake of completeness, we give here another
proof that uses Bari’s theorem as in [8].

Lemma 2.6. Let Λ be a sequence defined by (1.2). Then KΛ = {kλ}λ∈Λ is a Riesz basis

for F2
ϕ.

Proof. Let n > 0, en(z) = zn/‖zn‖ϕ,2, and hn := e−inθnen. We have

‖hn − kλn‖2ϕ,2 =

∥∥∥∥∥e
−inθnen −

en(λn)

‖kλn‖ϕ,2
en −

∑

k 6=n

ek(λn)

‖kλn‖ϕ,2
ek

∥∥∥∥∥

2

ϕ,2

=

∣∣∣∣1−
|en(|λn|)|
‖kλn‖ϕ,2

∣∣∣∣
2

︸ ︷︷ ︸
J1

+
∑

k 6=n

|ek(λn)|2
‖kλn‖2ϕ,2

︸ ︷︷ ︸
J2

.

Furthermore,

J1 =

∣∣∣∣1−
|en(|λn|)|
‖kλn‖ϕ,2

∣∣∣∣
2

≤ 1− |en(λn)|2
‖kλn‖2ϕ,2

= J2.

Consequently,

‖hn − kλn‖2ϕ,2 ≍
∑

k 6=n

|ek(λn)|2
‖kλn‖2ϕ,2

.
∑

k 6=n

∣∣∣∣
ek(λn)

en(λn)

∣∣∣∣
2

.

On the other hand, for k 6= n we have

|en(λn)|2
|ek(λn)|2

≍
(
1 + k

1 + n

) 1−β

2β

e2c(n,k),

where

c(n, k) := (n− k)

(
1 + n

1 + β

) 1
β

+ β

[(
1 + k

1 + β

) 1+β

β

−
(
1 + n

1 + β

) 1+β

β

]
.

Therefore, by simple computations we get

c(n, k) > (1 + β)−
1+β

β |k − n|2(1 + n)
1
β
−1.

Thus,
∞∑

n=0

‖hn − kλn‖2ϕ,2 ≍
∞∑

n=0

∑

k 6=n

|ek(λn)|2
‖kλn‖2ϕ,2

.

∞∑

n=0

∑

k 6=n

(
1 + n

1 + k

) 1−β

2β

e−2(1+β)
−

1+β
β |k−n|2(1+n)

1
β
−1

<∞.

Note that Λ = Γ with δk = 0. So Lemmas 2.4 and 2.5 imply that Λ is a uniqueness set
for F2

ϕ, that is the unique function in F2
ϕ that vanishes on Λ is the zero function. Also,
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for any λ ∈ Λ the sequence Λ \ {λ} is a zero sequence of F2
ϕ and, hence, the system KΛ

is complete and minimal in F2
ϕ and

∑
n

‖hn − kλn‖2ϕ,2 < ∞. Bari’s theorem [15, section

A.5.7.1] ensures that KΛ is a Riesz basis for F2
ϕ. �

For F∞
ϕ we have the following result

Lemma 2.7. Let λ∗ ∈ C \Λ. Then Λ∪ {λ∗} is a complete interpolating sequence for F∞
ϕ .

Proof. First let us prove that Λ̃ = Λ ∪ {λ∗} is a uniqueness set for F∞
ϕ . Indeed, suppose

that λ∗ 6= 0 and take f ∈ F∞
ϕ vanishing on Λ ∪ {λ∗}, so that f(z) = (1− z/λ∗)h(z)GΛ(z)

where h is an entire function. By Lemma 2.4 we get

|h(z)| dist(z, Λ̃)

(1 + |z|)1/2+ε . |f(z)|e−ϕ(z) . 1, z ∈ C.

It follows that h is the zero function. It remains to show that Λ̃ is an interpolating set
for F∞

ϕ . For this purpose let v = (vλ)λ∈Λ̃ be a sequence of complex numbers such that
‖v‖ϕ,∞,Λ̃ <∞. Put F (z) = (1− z/λ∗)GΛ(z) and consider the function

Fv(z) =
∑

λ∈Λ̃

vλ
F (z)

F ′(λ)(z − λ)
, z ∈ C.

We have

|Fv(z)| ≤
∑

λ∈Λ̃

|vλ|
∣∣∣∣

F (z)

F ′(λ)(z − λ)

∣∣∣∣

. ‖v‖ϕ,∞,Λ̃

∑

λ∈Λ̃

eϕ(λ)
|z|
|λ|

∣∣∣∣
GΛ(z)

G′
Λ(λ)(z − λ)

∣∣∣∣ .

Let z ∈ C and p ∈ N such that |λp−1| ≤ |z| < |λp|. Suppose that 0 6= |λ∗| < |λ1| and write

Λ̃ = (λn)n≥−1, where λ−1 = λ∗. Let |z| = et and un = log |λn|. We have

∑

λ∈Λ̃

eϕ(λ)
|z|
|λ|

∣∣∣∣
GΛ(z)

G′
Λ(λ)(z − λ)

∣∣∣∣ ≍
∑

n≤p−1

. . .

︸ ︷︷ ︸
I1

+
∑

n≥p

eϕ(λn)
dist(z,Λ)

|z − λn|
|z|p
|λn|n

p−1∏

k=0

1

|λk|

n−1∏

k=0

|λk|
︸ ︷︷ ︸

I2

.
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By (2.5),

I1 =
∑

n≤p−1

eϕ(λn)
dist(z,Λ)

|z − λn|
|z|p
|λn|n

p−1∏

k=0

1

|λk|

n−1∏

k=0

|λk|

≤ |z|p
∑

n≤p−1

exp

[
uβ+1
n − (n+ 1)un +

n∑

k=0

uk −
p−1∑

k=0

uk

]

= ept−βu
β+1
p−1

∑

n≤p−1

exp
[(un

2
+ dβu

1−β
n

)
−

(up−1

2
+ dβu

1−β
p−1

)]

≤ ept−βu
β+1
p−1

∑

n≥0

e−c|up−1−un|

. exp

(
ϕ(z)−

(
1

2β(β + 1)
+ o(1)

)
(p− s)2t1−β

)
≤ eϕ(z)

and

I2 ≍ |z|p+1
∑

n≥p

exp

[
uβ+1
n − (1 + n)un +

n−1∑

k=p

uk

]

≤ e(p+1)t−βuβ+1
p

∑

n≥0

exp

[
−1

2
|un − up|+ dβ

∣∣u1−βn − u1−βp

∣∣
]

. e(p+1)t−βuβ+1
p ≤ eϕ(z).

Thus, the interpolating function Fv belongs to F∞
ϕ . This completes the proof.

�

2.3. d−separated and log-separated sequences. A sequence {µn} of real numbers is
said to be separated whenever there exists a constant δ > 0 such that

inf
n 6=m

|µn − µm| ≥ δ.

Let Γ be a sequence of complex numbers. It is not difficult to see that if log Γ :=
{log |γ| : γ ∈ Γ} is separated then Γ is d−separated, and also if Γ is d−separated then
log Γ is a finite union of separated sequences. Hence Γ is a finite union of d−separated
sequences if and only if log Γ is a finite union of separated real sequences.

The following lemma was established by using a Bernstein type inequality in [5] in the
case β = 1. The proof when 0 < β < 1 is different.

Lemma 2.8. Let Γ be a sequence defined by (2.4). Then
∑

γn∈Γ

|〈f, kγn〉|2 ≤ C(Γ) ‖f‖2ϕ,2, (2.6)

for every f ∈ F2
ϕ if and only if {log |γn| : γn ∈ Γ} is a finite union of separated sequences.



14 K. KELLAY & Y. OMARI

Proof. Let f be a function in F2
ϕ. According to Lemma 2.6, the system KΛ is a Riesz

basis for F2
ϕ and, hence,

f(z) =
∑

λn∈Λ

〈f, kλn〉 gλn(z), z ∈ C,

where GΛ := {gλn : λn ∈ Λ} is the unique biorthogonal system of KΛ given by

gλn(z) =
‖kλn‖
G′

Λ(λn)

GΛ(z)

z − λn
, z ∈ C, (2.7)

and GΛ is the infinite product associated with Λ. We then get
∑

m≥0

∣∣∣〈f, kγm〉
∣∣∣
2

=
∑

m≥0

∣∣∣
〈∑

n≥0

〈f, kλn〉 gλn , kγm
〉∣∣∣

2

=
∑

m≥0

∣∣∣
∑

n≥0

〈f, kλn〉 〈gλn, kγm〉
∣∣∣
2

.

Since the operator f 7→ (〈f, kλn〉) is an isomorphism between F2
ϕ and ℓ2, relation (2.6) is

equivalent to the fact that the matrix C = (Cn,m)n,m defines a bounded operator on ℓ2,
where

|Cn,m| = |〈gλn, kγm〉| =
‖kλn‖ϕ,2
‖kγm‖ϕ,2

∣∣∣∣
GΛ(γm)

G′
Λ(λn)(λn − γm)

∣∣∣∣ .

Set pm = [(1 + β) (log |γm|)β]− 1. We have

|GΛ(γm)| ≍
dist(γm,Λ)

γm

pm∏

k=0

∣∣∣∣
γm
λk

∣∣∣∣

and

|G′
Λ(λn)| ≍

1

|λn|

n∏

k=0

∣∣∣∣
λn
λk

∣∣∣∣ .

Hence,

|Cn,m| ≍
‖kλn‖ϕ,2
‖kγm‖ϕ,2

dist(γm,Λ)

|λn − γm|
|γm|pm
|λn|n

pm∏

k=0

1

|λk|

n∏

k=0

|λk|. (2.8)

By (2.2), we have

‖kλn‖ϕ,2 ≍ |en(λn)| and ‖kγm‖ϕ,2 ≥ |epm(γm)|
thus we obtain

|Cn,m| .
‖zpm‖ϕ,2
‖zn‖ϕ,2

dist(γm,Λ)

|λn − γm|

pm∏

k=0

1

|λk|

n∏

k=0

|λk|

≍
(
1 + pm
1 + n

) 1−β

4β dist(γm,Λ)

|λn − γm|
e−α(n,m),
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where

α(n,m) = β
(1 + n

1 + β

) 1+β

β − β
(1 + pm
1 + β

) 1+β

β

+

pm∑

k=0

(1 + k

1 + β

) 1
β −

n∑

k=0

(1 + k

1 + β

) 1
β

=
1

2

[(1 + pm
1 + β

) 1
β −

(1 + n

1 + β

) 1
β
]
+

1 + o(1)

12β(1 + β)

[(1 + pm
1 + β

) 1−β

β −
(1 + n

1 + β

) 1−β

β
]
.

Now, if |γm| ≥ |λn|, then we have dist(γm,Λ) ≤ |λn − γm|, and hence,

|Cn,m| . e
−cβ

∣∣∣∣(1+pm)
1
β −(1+n)

1
β

∣∣∣∣
. (2.9)

If |γm| < |λn|, then dist(γm,Λ) ≤ |λpm| (or |γm|) and |λn − γm| ≍ |λn|. Again we have
(2.9). Thus (2.9) holds in both cases.

On the other hand, by Corollary 2.3 and by (2.8), we get

|Cn,m| &

(
log |γm|
log |λn|

) 1−β

4

eϕ(λn)−ϕ(γm) dist(γm,Λ)

|λn − γm|
|γm|pm+1

|λn|n+1

pm∏

k=0

1

|λk|

n∏

k=0

|λk|

≍
(
1 + pm
1 + n

) 1−β

4β dist(γm,Λ)

|λn − γm|
e−α̃(n,m),

where

α̃(n,m) =
(1 + pm
1 + β

) 1+β

β −
(1 + n

1 + β

) 1+β

β

+ (1 + n)
(1 + n

1 + β

) 1
β − (1 + pm)

(1 + pm
1 + β

) 1+β

β

+

pm∑

k=0

(1 + k

1 + β

) 1
β −

n∑

k=0

(1 + k

1 + β

) 1
β

=
1

2

[(1 + pm
1 + β

) 1
β −

(1 + n

1 + β

) 1
β
]
+

1 + o(1)

12β(1 + β)

[(1 + pm
1 + β

) 1−β

β −
(1 + n

1 + β

) 1−β

β
]
.

In the same way we get

|Cn,m| & e
−c̃β

∣∣∣∣(1+pm)
1
β −(1+n)

1
β

∣∣∣∣
.

Finally,

e
−c̃β

∣∣∣∣(1+pm)
1
β −(1+n)

1
β

∣∣∣∣
. |Cn,m| . e

−cβ

∣∣∣∣(1+pm)
1
β −(1+n)

1
β

∣∣∣∣
.

If
{
log |γ| : γ ∈ Γ

}
is a finite union of separated sequences, then C = (Cn,m) is bounded

on ℓ2.
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In the opposite direction, since KΛ is a Riesz basis, let gλ be the function given in (2.7),
‖gλ‖2ϕ,2 ≍ 1 and as before we have

1 &
∑

γ∈Γ

|gλ(γ)|2
kγ(γ)

&
∑

γ∈Γ∩Dd(λ,δ)

|gλ(γ)|2
kγ(γ)

&
∑

γ∈Γ∩Dd(λ,δ)

e−cβ | log |γ|−log |λ||

≍ Card(Γ ∩Dd(λ, δ)).

Since dist(γ,Λ) ≍ |γ − λ|, we get

sup
λ∈Λ

Card(Γ ∩Dd(λ, δ)) <∞.

Therefore Γ is a finite union of d−separated sequences.
�

3. Proof of Theorem 1.1

Proof. "⇐="
First of all, since the sequence Γ is d−separated, by Lemma 2.8 the operator TΓ is

bounded from F2
ϕ to ℓ2. On the other hand, the sequence Γ is a uniqueness set for F2

ϕ, and

for any γ ∈ Γ, the sequence Γ \ {γ} is a zero set for F2
ϕ. Indeed, let f ∈ F2

ϕ be such that
f |Γ = 0. By Hadamard’s factorization theorem [12] we can write f = hGΓ, for an entire
function h. Since f ∈ F2

ϕ, by Lemma 2.3 we have

|f(z)| 6 ‖f‖ϕ,2‖kz‖ϕ,2 .
eϕ(z)

|z|(log |z|) 1−β

4

, |z| > 1.

Lemma 2.4 implies that

|h(z)| dist(z,Γ)

(1 + |z|)3/2+cN . |f(z)|e−ϕ(z) .
1

|z|(log |z|) 1−β

4

, |z| > 1,

where cN = ∆N + ε, for a small enough ε so that cN < 1/2. Then h must be a polynomial.
Combining this fact with Lemma 2.5, we conclude that h must be identically zero, and
hence Γ is a uniqueness set for F2

ϕ, therefore TΓ is injective. Futhermore TΓgn = en+1,

n ≥ 0, where en+1 is the (n+ 1)−th element of the canonical basis of ℓ2, and

gn(z) =
‖kγn‖ϕ,2
G′

Γ(γn)

GΓ(z)

z − γn
, z ∈ C.

Therefore, the range of TΓ is dense in ℓ2. In order to prove that TΓ is onto, we associate
with each a ∈ ℓ2 the function Ha as follows :
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Ha(z) =
∑

γ∈Γ

aγ
‖kγ‖ϕ,2
G′

Γ(γ)

GΓ(z)

z − γ
, z ∈ C.

The estimate of the reproducing kernel given in Corollary 2.3 and the estimate on GΓ

proved in Lemma 2.4 ensure that the above series converges uniformly on every compact
set of C. It remains now to show that Ha ∈ F2

ϕ. Indeed, since KΛ is a Riesz basis for F2
ϕ

(see Lemma 2.6), we have

‖Ha‖2ϕ,2 ≍
∑

m>0

|〈Ha, kλm〉|2

=
∑

m>0

∣∣∣∣∣
∑

n>0

an
GΓ(λm)

G′
Γ(γn)(λm − γn)

‖kγn‖ϕ,2
‖kλm‖ϕ,2

∣∣∣∣∣

2

.

Hence {Ha}a∈ℓ2 ⊂ F2
ϕ if and only if the matrix A = (An,m)n,m>0 defines a bounded operator

on ℓ2, where

|An,m| =
∣∣∣∣

GΓ(λm)

G′
Γ(γn)(λm − γn)

‖kγn‖ϕ,2
‖kλm‖ϕ,2

∣∣∣∣ .

Recall that for every z ∈ C there exists p ∈ N such that |γp−1| ≤ |z| < |γp|. We have

|GΓ(z)| ≍
dist(z,Γ)

|z|

p−1∏

k=0

|z/γk|

and

|G′
Γ(γn)| ≍

1

|γn|

n−1∏

k=0

∣∣∣∣
γn
γk

∣∣∣∣ .

Since δn = O
(
(1 + n)

1
β
−1
)
, there exists M > 0 such that for every m ≥ 0 there exists

|i| ≤M such that the index p corresponding to λm is m+ i. Consequently,

|An,m| ≍ ‖kγn‖ϕ,2
‖kλm‖ϕ,2

dist(λm,Γ)

|λm − γn|
|γn|
λm

m+i−1∏

k=0

∣∣∣∣
λm
γk

∣∣∣∣
n−1∏

k=0

∣∣∣∣
γk
γn

∣∣∣∣ .

By Lemma 2.2 we have

‖kz‖2ϕ,2 ≍ |enz−1(z)|2 + |enz
(z)|2 + e2ϕ(z)

ρ(z)2
,

where nz = [(1+ β) logβ |z|]. Again, since δn = O((1+ n)
1
β
−1), for every n ≥ 0 there exists

|j| ≤M satisfying

‖kγn‖2ϕ,2 ≍ |en+j(γn)|2 +
e2ϕ(γn)

|γn|2 (log |γn|)1−β
.



18 K. KELLAY & Y. OMARI

Also for every m ≥ 0 we have

‖kλm‖ϕ,2 ≍ |em(λm)| ≍ eϕ(λn)

|λm| (log |λm|)
1−β

4

.

By these estimates we can write |An,m| ≍ In,m + Jn,m, where

In,m ≍ |en+j(γn)|
|em(λm)|

|λm|
|λm − γn|

|γn|
|λm|

m+i−1∏

k=0

∣∣∣∣
λm
γk

∣∣∣∣
n−1∏

k=0

∣∣∣∣
γk
γn

∣∣∣∣

=:
|λm|

|λm − γn|
eΘ(n,m)

and

Jn,m ≍ (log |λm|)
1−β

4

(log |γn|)
1−β

2

eϕ(γn)−ϕ(λm) |λm|
|λm − γn|

m+i−1∏

k=0

∣∣∣∣
λm
γk

∣∣∣∣
n−1∏

k=0

∣∣∣∣
γk
γn

∣∣∣∣

=:
|λm|

|λm − γn|
eθ(n,m).

To estimate the coefficients In,m and Jn,m, we first write

Kn,m =

m+i−1∏

k=0

∣∣∣∣
λm
γk

∣∣∣∣
n−1∏

k=0

∣∣∣∣
γk
γn

∣∣∣∣ .

We next put uk := log |λk| for every k ≥ 0. We have

logKn,m = (m+ i)um − n(un + δn)−
m+i−1∑

k=0

uk +

n−1∑

k=0

uk −
m+i−1∑

k=0

δk +

n−1∑

k=0

δk

=
um+i − un

2
+
[
βuβ+1

n − n(un + δn)
]
−
[
βuβ+1

m+i − (m+ i)um

]

+ dβ

(
u1−βn − u1−βm+i

)
−

m+i−1∑

k=0

δk +

n−1∑

k=0

δk.

Hence,

Θ(n,m) := logKn,m + log |en+j(γn)| − log em(λm) + (un + δn)− um

=
un − um+i

2
+

(
1

2β(β + 1)
+ o(1)

)(
j2u1−βn − i2u1−βm+i

)
+ dβ

(
u1−βn − u1−βm+i

)

−
m+i−1∑

k=0

δk +

n∑

k=0

δk +
1− β

4
log

1 +m

1 + n
.

Now if n ≤ m+ i, then

In,m ≍ |λm|
|λm − γn|

eΘ(n,m) ≍ eΘ(n,m)
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and

Θ(n,m) = −
(
1

2
+ o(1)

)
(um+i − un)−

m+i−1∑

k=n+1

δk.

If n ≥ m+ i, then

In,m ≍ |λm|
|λm − γn|

eΘ(n,m) ≍ eΘ(n,m)+um−un−δn

and

Θ(n,m) + um − un − δn = −
(
1

2
+ o(1)

)
(un − um+i) +

n−1∑

k=m+i

δk.

Hence,

In,m ≍ exp

[
−
(
1

2
+ o(1)

)
|un − um+i| ±

n−1∑

k=m+i

δk

]
.

Similarly, we have

θ(n,m) := logKn,m + ϕ(γn)− ϕ(λm) +
1− β

4
log

1 +m

(1 + n)2

=
un − um+i

2
+

(
1

2β(β + 1)
+ o(1)

)(
j2u1−βn − i2u1−βm+i

)
+

1− β

4
log

1 +m

(1 + n)2

+ dβ

(
u1−βn − u1−βm+i

)
−

m+i−1∑

k=0

δk +
n∑

k=0

δk.

If n ≤ m+ i, we have

Jn,m ≍ |λm|
|λm − γn|

eθ(n,m) ≍ eθ(n,m),

and

θ(n,m) = −
(
1

2
+ o(1)

)
(um+i − un)−

m+i−1∑

k=n+1

δk.

If n ≥ m+ i, then

Jn,m ≍ |λm|
|λm − γn|

eθ(n,m) ≍ eθ(n,m)+um−un−δn

and

θ(n,m) + um − un − δn = −
(
1

2
+ o(1)

)
(un − um+i) +

n−1∑

k=m+i

δk.

Hence,

Jn,m ≍ exp

[
−
(
1

2
+ o(1)

)
|un − um+i| ±

n−1∑

k=m+i

δk

]
.
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Consequently,

|An,m| ≍ In,m + Jn,m ≍ exp

[
−
(
1

2
+ o(1)

)
|un − um+i| ±

n−1∑

k=m+i

δk

]
.

Recall that

∆N := lim sup
n

1

un+N − un

∣∣∣∣∣

n+M∑

k=n+1

δk

∣∣∣∣∣ <
1

2
.

This implies that for a very small ε (chosen in such a way that ∆N + ε < 1/2) and for
every n ≥ 0 we have ∣∣∣∣∣

n+M∑

k=n+1

δk

∣∣∣∣∣ ≤
(
∆N +

ε

2

)
(un+N − un) .

Thus,

|An,m| . exp

[
−
(
1

2
−

(
∆N +

ε

2

)
+ o(1)

)
|un − um+i|

]
.

Since ∆N < 1
2
, the matrix A = (An,m) defines a bounded operator on ℓ2 and, hence, KΓ is

a Riesz basis for F2
ϕ.

"=⇒"
Proof of (1). Let ϕ(r) = ϕβ(r) =

(
log+ r

)1+β
, 0 < β ≤ 1. If KΓ is a Riesz basis for F2

ϕβ

then Γ is an interpolating sequence for F2
ϕβ

and hence for F2
ϕ1

. By [5, Corollary 2.3] Γ is
d−separated.

Proof of (2). Let Γ = {γn} be a sequence of complex numbers such that KΓ is a Riesz
basis for F2

ϕ. Then for every γ ∈ Γ there exists a unique function fγ ∈ F2
ϕ that satisfies

the interpolation problem :

〈fγ , kγ〉 = 1 and 〈fγ, kγ〉 = 0, γ′ ∈ Γ \ {γ}.
Consequently, Γ\{γ} is a subset of the zero set of the function fγ. Since KΓ is complete, Γ
is a uniqueness set, then Γ \ {γ} is exactly the zero set of fγ. By Hadamard’s factorization

theorem we have fγ(z) = c GΓ(z)
G′

Γ(γ)(z−γ)
, for some constant c ∈ C. Since 〈fγ, kγ〉 = 1, we get

c = ‖kγ‖ϕ,2. Therefore,

fγ(z) = ‖kγ‖ϕ,2
GΓ(z)

G′
Γ(γ)(z − γ)

, z ∈ C.

Furthermore ‖fγ‖ϕ,2 ≍ 1. Hence,

|fγ(λm)| ≤ ‖fγ‖ϕ,2 ‖kλm‖ ≍ |em(λm)| ,
for every λm ∈ Λ.
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Suppose now that the sequence (δn/(1+n)
1
β
−1) is unbounded. Without loss of generality

we assume the existence of a subsequence
(
δnk

/(1+nk)
1
β
−1
)

which tends to +∞ (the case of
convergence to −∞ is similar). Then, for every k there exists mk such that |nk−mk| → ∞
and γnk

is close to λmk
. We obtain
∣∣fγnk

(λmk
)
∣∣ . ‖kλmk

‖ϕ,2 ≍ |emk
(λmk

)| . (3.1)

On the other hand, we have ‖kγnk
‖ϕ,2 ≥ |emk

(γnk
)| and

|GΓ(λmk
)| ≍ |λmk

− γnk
|

|λmk
|

nk−1∏

j=0

∣∣∣∣
λmk

γj

∣∣∣∣ , |G′
Γ(γnk

)| ≍ 1

|γnk
|

nk−1∏

j=0

∣∣∣∣
γnk

γj

∣∣∣∣ .

For the sake of brevity, we denote n := nk and m := mk. Identity (3.1) becomes

|em(λm)| & |fγn(λm)| &
|γn|
|λm|

|em(γn)|
n−1∏

j=0

∣∣∣∣
λm
γj

∣∣∣∣
∣∣∣∣
γj
γn

∣∣∣∣ .

Therefore,
∣∣∣∣
em(λm)

em(γn)

∣∣∣∣ &

∣∣∣∣
λm
γn

∣∣∣∣
n−1

⇐⇒
∣∣∣∣
λm
γn

∣∣∣∣
n−m−1

. 1. (3.2)

Note that we can suppose |λm| ≤ |γn| and, hence, m = n + δ′n + δn,m, where (δ′n) is a se-

quence tending to infinity
(
δ′n = Const(β)δn/(1 + n)

1
β
−1
)

and (δn,m) is a bounded negative

sequence such that δn,m ≤ −1 (otherwise we replace m by m − m′ for a suitable integer
m′). Thus,

log

∣∣∣∣
λm
γn

∣∣∣∣ = um − (un + δn)

= bβ
(
(1 + β)(un + δn)

β + δn,m
) 1

β − (un + δn)

=

(
1

β(β + 1)
+ o(1)

)
δn,m(un + δn)

1−β.

Since n−m− 1 = n+ δ′n −m− δ′n − 1 = −δn,m − δn − 1, (3.2) becomes

1 & −(δn + δn,m + 1)

(
1

β(β + 1)
+ o(1)

)
δn,m(un + δn)

1−β ≥ cβ δnu
1−β
n ,

which is impossible.

Proof of (3). Recall first that the matrix of the coefficients

|An,m| =

∣∣∣∣
GΓ(λm)

G′
Γ(γn)(λm − γn)

‖kγn‖ϕ,2
‖kλm‖ϕ,2

∣∣∣∣
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defines a bounded operator on ℓ2. From the proof of the first part we have

|An,m| & exp

[
−|um+i − un|

2
+ cβ

(
u1−βn − u1−βm+i

)
∓

m+i−1∑

k=n+1

δk

]
.

Assume that for every N ≥ 1, we have

∆N := lim sup
n

1

un+N − un

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ =
1

2
+ εN ,

for a nonnegative sequence (εN). For every N ≥ 1 there exists an integer nN (sufficiently
large) such that

∣∣∣∣∣

nN+N∑

k=nN+1

δk

∣∣∣∣∣ ≥ unN+N − unN

2
+ εN

unN+N − unN

2
.

• Assume that there exists a subsequence (Nl) such that
nl+Nl∑
k=nl+1

δk > 0 (nl is the integer

nNl
). We get

|Anl+Nl,nl
| & exp

[
−|unl

− unl+Nl
|

2
+ cβ

(
u1−βnl+Nl

− u1−βnl

)
+

nl+Nl∑

k=nl+1

δk

]

& exp
[
cβ

(
u1−βnl+Nl

− u1−βnl

)]
.

This implies that (Anl+Nl,nl
) is unbounded (0 < β < 1) and, hence, the matrix (An,m)

cannot represent a bounded operator on ℓ2.

• There exists N0 ≥ 1 such that for every N ≥ N0 we have
nl+Nl∑
k=nl+1

δk < 0. For every n we

have

|An,n+N | & exp

[
−un+N − un

2
− cβ

(
u1−βn+N − u1−βn

)
−

n+N∑

k=n+1

δk

]
.

If (εN) contains a subsequence (εN)N∈J which is bounded below by some ε > 0, where J
is an infinite subset of N. Then for N ∈ J , we have

|AnN ,nN+N | & exp

[
−cβ

(
u1−βnN+N − u1−βnN

)
+ ε

unN+N − unN

2

]
.

This ensures that (AnN ,nN+N) tends to infinity. Therefore, the matrix A cannot define a
bounded operator on ℓ2. Suppose now that (εN) converges to zero. Simple computations
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yield

|AnN ,nN+N | & exp

[
−cβ

(
u1−βnN+N − u1−βnN

)
+ εN

unN+N − unN

2

]

& exp

[
−cβ

(
u1−βnN+N − u1−βnN

)
+
εN
2

β(1 + nN )

1− β2

(
u1−βnN+N − u1−βnN

)]

= exp

[(
u1−βnN+N − u1−βnN

)(
εN
2

β(1 + nN)

1− β2
− cβ

)]
.

Choose nN such that εN(1 + nN ) >
4cβ
β
(1− β2), (0 < β < 1). It follows that

|AnN ,nN+N | & exp
[(
u1−βnN+N − u1−βnN

)
(2cβ − cβ)

]

= exp
[
cβ

(
u1−βnN+N − u1−βnN

)]
.

Thus (AnN ,nN+N)N is unbounded and, hence, the matrix A = (An,m) cannot define a
bounded operator on ℓ2. This completes the proof.

�

4. Proof of Theorem 1.2

” ⇐= ”
Suppose that KΓ is a Riesz basis for F2

ϕ. Then Γ satisfies conditions (1), (2) and (3) of
Theorem 1.1.

First, the sequence Γ̃ = Γ ∪ {γ∗} is a uniqueness set for F∞
ϕ . Indeed, if f is a function

from F∞
ϕ that vanishes on Γ̃, then f = (1 − z/γ∗)GΓh, for an entire function h. Our

estimates of GΓ imply that

|h(z)| dist(z,Γ)

(1 + |z|)1/2+∆N+ε
. |f(z)|e−ϕ(z) . 1, z ∈ C.

Hence,

|h(z)| . (1 + |z|)1/2+∆N+ε

dist(z,Γ)
, z ∈ C \ Γ.

Since ∆N < 1/2, the function h must be identically zero.

Let us prove that Γ̃ = {γn}n≥−1 is an interpolating sequence for F∞
ϕ , where γ−1 = γ∗.

For this, let v = (vn) be a sequence such that ‖v‖ϕ,∞,Γ̃ <∞ and consider the entire function
Lv,

Lv(z) =
∑

n≥−1

vn
FΓ(z)

F ′
Γ(γn)(z − γn)

, z ∈ C.
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where FΓ = (1− z/γ∗)GΓ. Let us verify that Lv ∈ F∞
ϕ . According to Lemma 2.7, Λ∪{λ∗}

is a complete interpolating set for F∞
ϕ and consequently

‖Lv‖ϕ,∞ ≍ sup
m≥−1

e−ϕ(λm)

∣∣∣∣∣
∑

n≥0

vn
FΓ(λm)

F ′
Γ(γn)(λm − γn)

∣∣∣∣∣ = sup
m≥−1

∣∣∣∣∣
∑

n≥0

vne
−ϕ(γn)Bn,m

∣∣∣∣∣ ,

where

|Bn,m| = eϕ(γn)−ϕ(λm)

∣∣∣∣
FΓ(λm)

F ′
Γ(γn)(λm − γn)

∣∣∣∣

≍ eϕ(γn)−ϕ(λm) |λm|
|γn|

∣∣∣∣
GΓ(λm)

G′
Γ(γn)(λm − γn)

∣∣∣∣

≍ |An,m| eo(1)|um−un|,

and un = log |λn|. The estimates on the matrix A = (An,m) imply that Lv belongs to F∞
ϕ .

” =⇒ ”
Suppose now that Γ ∪ {γ∗} is a complete interpolating set for F∞

ϕ . To prove that KΓ is

a Riesz basis for F2
ϕ, it suffices to verify that Γ satisfies conditions (1)-(3) of Theorem 1.1.

First Γ is d−separated because every interpolating sequence for F∞
ϕβ

is also an interpolating
sequence for F∞

ϕ1
. Furthermore, remark that

|Bn,m| ≍ eϕ(γn)−ϕ(λm) |λm|
|γn|

∣∣∣∣
GΓ(λm)

G′
Γ(γn)(λm − γn)

∣∣∣∣ &
(log γn)

1−β

2

(log λn)
1−β

4

|An,m|.

Arguing as in the proof of Theorem 1.1, if (δn) contains a subsequence (δnk
) such that(

δnk
/(1 + nk)

1
β
−1
)

is unbounded, then (An,m) is unbounded and, consequently, (Bn,m)

is unbounded too. Thus (2) holds. Suppose now that ∆N = 1
2
+ εN , for a nonnegative

sequence (εN). Again as in the proof of Theorem 1.1, the sequence |Ank+Nk,nk
|+|Ank,nk+Nk

|
is unbounded and, hence, (Bn,m) is unbounded too. This proves (3) and completes the
proof.

5. Final remarks

The following remark shows that the superior limit in condition (3) in Theorem 1.1 can
be replaced by a supremum. This shows that in the case β = 1, Theorem 1.1 and [5,
Theorem 1.1] are equivalent.

Remark 5.1. Let (δn) be a sequence of real numbers such that
(
δn/(1 + n)

1
β
−1
)
∈ ℓ∞. Let

N be a positive integer and δ = 1

2β(1+β)
1
β

. The following conditions are equivalent

(1) sup
n

1

N(1 + n)
1
β
−1

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ < δ,
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(2) lim sup
n

1

N(1 + n)
1
β
−1

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ < δ.

Proof. First, it is obvious that

lim sup
n

1

N(1 + n)
1
β
−1

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ ≤ sup
n

1

N(1 + n)
1
β
−1

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ .

Conversely, let Γ = {γn} be a d−separated sequence of complex numbers ordered in such
a way that |γn| ≤ |γn+1|. Set γn = λne

δneiθn . Suppose that

∆N := lim sup
n

1

N(1 + n)
1
β
−1

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ < δ.

Let ε ∈ (0, δ −∆N ). There exists m ≥ 0 such that

sup
n≥m

1

N(1 + n)
1
β
−1

∣∣∣∣∣

n+N∑

k=n+1

δk

∣∣∣∣∣ ≤ ∆N + ε < δ.

Thus, KΓ̃ is a Riesz basis for F2
ϕ, where

Γ̃ :=

{
e(

n+1
1+β )

1
β

: 0 ≤ n ≤ m− 1

}
∪ {γn ∈ Γ : n ≥ m} .

Consequently, KΓ is also a Riesz basis for F2
ϕ. �
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